Far-Infrared Spectroscopy of High Redshift Systems: from cSO to CCAT

Gordon Stacey

Thomas Nikola, Carl Ferkinhoff, Drew Brisbin, Steve Hailey-Dunsheath, Tom Oberst, Nick Fiolet, Johannes Staguhn, Dominic Benford, Carol Tucker

Far-IR Fine Structure Lines

\square Most abundant elements are O, C, N
\square Species with $1,2,4$ or 5 equivalent p electrons will have ground state terms split into fine-structure levels
$>\mathrm{O}: \mathrm{O}^{+++}(25 \mathrm{um}), \mathrm{O}^{++}(52 \& 88 \mathrm{um}), \mathrm{O}$ (146 \& 63 um)
$>$ C: $\mathrm{C}^{+}(158 \mathrm{um}), \mathrm{C}^{0}(370 \& 610 \mathrm{um})$
$>\mathrm{N}: \mathrm{N}^{++}(57 \mathrm{um}), \mathrm{N}^{+}(122$ \& 205 um$)$
\square These lines lie in the far-IR where extinction is not an issue
$>$ Collisionally excited \& optically thin \Rightarrow cool the gas trace its physical conditions
$>$ Reveal the strength and hardness of ambient UV fields

- extent and age of the starburst
$>$ Trace abundances - processing of ISM

Utility: Ionized Gas Regions

\square Density tracers

$>$ Einstein A coefficients $\propto v^{3}$, collision rates $\mathrm{quil} \sim$ constant
\therefore since $\mathrm{n}_{\text {crit }} \sim \mathrm{A} / \mathrm{q}_{\mathrm{ul}}$ we have $\mathrm{n}_{\text {crit }} \propto v^{3}$
$>$ Furthermore the emitting levels lie far below $\mathrm{T}_{\text {gas }}$
\Rightarrow line ratios T-insensitive probes of gas density

Utility: Ionized Gas Regions

\square Hardness of the ambient radiation field
$>$ Within an HII region, the relative abundance of the ionization states of an element depend on the hardness of the local interstellar radiation field. For exal 07.5 Neutral ISM
$\mathrm{AGN} \mathrm{O}^{+++}(54.9 \mathrm{eV}), \mathrm{O}^{++}(35.1 \mathrm{eV}), \mathrm{O}^{0}(<13.6 \mathrm{eV})$
$\mathrm{O} 8 \longrightarrow \mathrm{~N}^{++}(29.6 \mathrm{eV})$,
$\mathrm{N}^{+}(14.5 \mathrm{eV}) \longleftarrow \quad \mathrm{BO}$

Neutral Gas Lines:
 Photodissociation Regions

Molecular cloud collapses, forming stars.

> lonized Hydrogen (HII) regions surrounding newly formed stars.

Photodissociation regions form where far-UV (6-13.6 eV) photons impinge on neutral clouds - penetrate to $A_{V} \sim 3$

The [CII] and [OI] Line Trace the FUV Radiation Field Strength

$\square \sim 0.1$ and 1% of the incident far-UV starlight heats the gas through the photoelectric effect, which cools through far-IR line emission of [CII] and [OI] $63 \mu \mathrm{~m}$
\square The efficiency of gas heating is a function of n and FUV field (6 to 13.6 eV) strength, G_{0}
$>$ As G_{0} rises at constant n , grain charge builds up, lowering the excess KE of the next photo-electron
$>$ This is mitigated by raising n , enabling more recombinations, so that the efficiency is $\sim G_{0} / n$
\square Most of the far-UV comes out as FIR continuum down-converted by the dust in the PDRs
\square Therefore, the $([\mathrm{CII}]+[\mathrm{Ol}]) /$ FIR ratio measures the efficiency, hence G_{0} / n. The combination yields both G and n, since the [CII]/[OI] ratio is density sensitive.

Air and Spaceborne Platforms: M82

\square Lines: [SIII], [Sill], [OIII], [OI], [NII], [CII], [CI]
\square Overall Conclusions:
> Clumpy neutral ISM
-50\% PDRs, 50\% MC cores
aPDRs: $\mathrm{G}_{0} \sim 700, \mathrm{n} \sim 3000 \mathrm{~cm}^{-3}$
> lonized ISM
-Density: $200 \mathrm{~cm}^{-3}$

- Mass 20\% of neutral gas
aVolume filling factor: 10\%
> Stellar Population:
-3 to 5 Myr old instantaneous starburst
- $100 \mathrm{M}_{\odot}$ cut-off

* KAO Study: Lord et al. 1996
* ISO Study: Colbert et al. 1999
* Herschel Study: Contursi et al. 2010

High z Far-IR Spectroscopy

(future) 25 meter CCAT windows on Cerro Chajnantor at 5600 m
\square Dust is pervasive even at highest redshifts \Rightarrow would like to use far-IR lines in early Universe studies. Difficult with small aperture satellites, but enabled with large submm/mm telescopes and arrays
Unfortunately, telluric windows limit spectral coverage and restrict numbers of lines available for any given source, but still...

The Redshift (z) and Early Universe Spectrometer: ZEUS

S. Hailey-Dunsheath
 Cornell PhD 2009
\square Submm (650 and 850 GHz) grating spectrometer

$$
\Delta R \equiv \lambda / \Delta \lambda \sim 1200 \diamond B W \sim 20 \mathrm{GHz} \Delta \mathrm{~T}_{\text {rec }}(\mathrm{SSB})<40 \mathrm{~K}
$$

\Rightarrow Limiting flux (5σ in 4 hours) ~ 0.8 to $1.1 \times 10^{-18} \mathrm{~W} \mathrm{~m}^{-2}$ (CSO)
\Rightarrow Factor of two better on APEX $\Leftrightarrow 1-3 \times 10^{9} M_{\odot}$ (CII)
\square Data here from ZEUS - single beam on the sky
\square Upgrade to ZEUS-2 a $\rangle 6$ color (200, 230, 350, 450, 610, $890 \mu \mathrm{~m}$ bands); $\diamond 40 \mathrm{GHz}$ Bandwidth $\diamond 10,9, \& 5$ beam system

ZEUS/CSO z = 1 to 2 [CII] Survey

Survey investigates star formation near its peak in the history of the Universe

\square First survey -- a bit heterogeneous
> Attempt made to survey both star formation dominated (SF-D) and AGN dominated (AGN-D) systems
$>$ Motivated by detection - at the time of submission, only 4 high z sources reported elsewhere...
$>\mathrm{L}_{\text {FIR }}(42.5<\lambda<122.5 \mu \mathrm{~m}): 3 \times 10^{12}$ to $2.5 \times 10^{14} \mathrm{~L}_{\odot}$
\square To date we have reported 13 (now have 24) new detections \& 1 strong upper limit

High z [CII]

\square First detection at high z :
J1148+5251 QSO @ z=6.42
\square Subsequent detections of other AGN then SB associated systems
$>$ First detections: $[\mathrm{CII}] / \mathrm{L}_{\text {far-IR }} \equiv$ R ~ 2-4 $\times 10^{-4} \sim$ local ULIRGs

- PDR Model: High G。
> Elevated star-formation rates: 1000 solar masses/yr

Ivison et al. 2010

Wagg et al. 2010

Maiolino et al. 2009

A Few Optical Images...

ZEUS Redshift 1 to 2 [CII] Survey

Results: The [CII] to FIR Ratio

- be an excellent signal
$\underline{\varepsilon}$ for star formation at high z

Stacey et al. 2010

SB-D:
$R=2.9 \pm 0.5 \times 10^{-3}$
11 New ZEUS z ~ 1 2 sources -
confirm and extend (Brisbin et al 2011)

Results: [CII], CO and the

 FIR \Rightarrow PDR Emission
$\square[\mathrm{CII}] / \mathrm{CO}(1-0)$ and FIR ratios similar to those of nearby starburst galaxies
$\square \Rightarrow$ emission
regions in our SB-D sample have similar FUV and densities as nearby starbursters
> G ~ 400-5000
$>\mathrm{n} \sim 10^{3}-10^{4}$

SDSS J100038+020822

PDR Modeling

\square Two sources (SMMJ10038 and MIPS J142824) have multiple CO Lines available, five others just one CO line (SMM J123634, SWIRE J104738, SWIRE J104705, IRAS F10026, 3C 368)
\square PDR parameters well constrained
$>$ G ~400-2000
$>\mathrm{n} \sim 0.3$ to $2 \times 10^{4} \mathrm{~cm}$

G_{0} from [CII] and FIR

\square Seven sources have no CO lines available
\square Can still confidently find G_{0}, from [CII]/FIR ratio since we have learned from above that $\mathrm{n} \sim 10^{3}$-few $10^{4} \mathrm{~cm}^{-3}$:
> 3C 065: $\quad \mathrm{G}<23,000$
> PG 1206: $\quad G \sim 10,000$
> PKS 0215: G ~ 7,000
> 3C 446: $\quad G \sim 5,000$
> RX J09414: G ~ 3,000
> SMM J2247: G ~ 3,000

$>$ PG 1241: \quad ~ 150

Extended Starbursts at High z

\square PDR models constrain G_{0} and n - if only [CII]/FIR we have just G_{0}
$>$ Since within PDRs, most of the FUV ends up heating the dust, within PDR models, $\mathbf{G}_{0} \sim \mathrm{I}_{\text {FIR }}$
$>$ Therefore, a simple ratio $I_{\text {FIR }} / G_{0}$ yields $\phi_{\text {beam }}$ - which then yields the physical size of the source
Inferred sizes are large - several kpc-scales
\square Galaxies are complex \Rightarrow plane parallel models are only a first cut
\square More sophisticated models yield similar results: size ~ 2 to 6 kpc depending on assumptions about field distribution
Star formation is extended on kpc scales with physical conditions very similar to M82 - but with 100 to 1000 times the star formation rate!

ZEUS/CSO [OIII] at High z

$\square \mathrm{O}^{++}$takes 35 eV to form, so that [OIII] traces early type stars - or AGN...
\square Transmitted through telluric windows at epochs of interests:
$>88 \mu \mathrm{~m}$ line at $\mathrm{z} \sim(1.3) 3$ and 4 (6) for ZEUS (ZEUS-2)
$>52 \mu \mathrm{~m}$ line at $\mathrm{z} \sim(3) 5.7$ and 7.7! --- much more challenging
$>52 \mu \mathrm{~m}$ line is detected by Herschel/PACS at $\mathrm{z} \sim 1.3$ and 2.3 (Sturm et al. 2010)
\square Detectable in reasonable times for bright sources

ZEUS/CSO Detections

Ferkinhoff et al. 2010 ApJ 714, L147
\square Detected in in 1.3 hours of integration time on CSO differences in sensitivity reflect telluric transmission
\square Two composite systems
$>$ APM 08279 extremely lensed ($\mu \rightarrow 4$ to 90)
$>$ SMM J02399 moderately lensed ($\mu \sim 2.38$)

Characterizing the Starbust/AGN

\square [OIII]/FIR
$>$ APM $08279 \sim 5.3 \times 10^{-4}$; SMM J02399 $\sim 3.6 \times 10^{-3}$
$>$ Straddles the average $\left(2 \times 10^{-3}\right)$ found for local galaxies (Malhotra et al. 2001, Negishi et al. 2001, Brauher et al. 2008)
\square Origins of [OIII]: APM 08279
$>$ Very few tracers of star formation available: e.g. H recombination lines clearly from the AGN
$>$ Spitzer PAH upper limit $10 \times \mathrm{F}_{\text {[OIII] }}$, and expect \sim unity
\Rightarrow Not clear - build both starburst and AGN model

AGN Origin for APM 08279?

$\square A G N: N R L n_{e} \sim 100-10^{4} \mathrm{~cm}^{-3}<\mathrm{n}_{\mathrm{e}}>\sim 2000 \mathrm{~cm}^{-3}$ (Peterson 1997)
\square For this n_{e} range one can show the expected [OIII] $88 \mu \mathrm{~m}$ line luminosity is:
$>\sim \mathrm{L}_{\text {[0III] } 88 \mu \mathrm{~m}} \sim 1$ to $100 \times 10^{10} / \mu \mathrm{L}_{\odot}$ (function of n_{e})
\Rightarrow all the observed $10^{11} / \mu \mathrm{L}_{\odot}$ [OIII] may arise from NLR
if $n_{e} \sim 2000 \mathrm{~cm}^{-3}$
\square Fit is obtained for $n_{e} \sim 2000$
\square Can test this with the [OIII] $52 \mu \mathrm{~m}$ line since line [OIII] $88 / 52 \mu \mathrm{~m}$ line ratio is density sensitive

Starburst Origin for APM 08279

$\square[\mathrm{OIII}] /[\mathrm{NII}]$ line ratios insensitive to n_{e}, but very sensitive to $\mathrm{T}_{\text {eff }}$
$>$ [OIII]/[NII] 122 especially SO...
Ratio in APM 08279 > 17 based on non-detection of $205 \mu \mathrm{~m}$ (Krips et al. 2007)

$$
\Rightarrow \begin{gathered}
\Rightarrow \mathrm{T}_{\text {eff }}>37,000 \mathrm{~K} \Leftrightarrow 08.5 \\
\text { stars }
\end{gathered}
$$

- FIT: starburst headed by O8.5, 35% of FIR from starburst, SFR ~ 12,000/ $\mu \mathrm{M}_{\odot}$ /year

From Rubin, R. 1985

Detections of the [NII] 122 um Line Ferkinhoff et al. 2011 ApJ Letters (accepted)

\square January/March this year detected [NII] $122 \mu \mathrm{~m}$ line from composite systems
> SMM J02399:
$z=2.808, \mathrm{~L}_{\text {far }-\mathrm{R}} \sim 3 \times 10^{13} / \mu \mathrm{L}_{\odot}$
$>$ Cloverleaf quasar: $\quad z=2.558, \mathrm{~L}_{\text {far }-1 \mathbb{R}} \sim 6 \times 10^{13} / \mu \mathrm{L}_{\odot}$
\square Line is bright: 0.04 to 0.2% of the far-IR continuum
\square Optically thin, high n, high T limit \Rightarrow Calculate minimum mass of ionized gas:
>2 to 16% of molecular ISM
$>$ Values range from few to 20\% (M82, Lord et al. 1996) in star forming galaxies.

[NII] in the Cloverleaf

$\square z=2.558$, lensed by 11, but all components within the 10 " beam
\square No other far-IR lines, but $\mathrm{H} \alpha, \mathrm{H} \beta$, [OIII] 5007 \AA (Hill et al. 1993), and $6.2 \& 7.7 \mu \mathrm{~m}$ PAH (Lutz et al. 2007)
\square Composite model:
$>$ Star formation: PAH features, half the far-IR, and [NII]
$>$ Properties similar to M82-200 x luminosity:

- $1 \times 10^{9}-08.5$ stars ($T_{\text {eff }} \sim 36,500 \mathrm{~K}$)
$\square \Rightarrow$ age $\sim 3 \times 10^{6} \mathrm{yrs}$
$\square n_{e} \sim 100 \mathrm{~cm}^{-3}, M_{H I I} \sim 3 \times 10^{9} M_{\odot}$
$>$ AGN: optical lines, half of [NII]
$>$ Arises from NLR with $\log (\mathrm{U})=-3.75$ to -4
$\square \mathrm{n}_{\mathrm{e}} \sim 5000 \mathrm{~cm}^{-3}$

[NII] in SMM J02399

\square Strong detection of line at velocity of L2, possible line at velocity of L1
\square Velocity information suggests origins for line
$>$ L2: starburst
$>$ L1: AGN
\square We previously detected the [OIII] 88 $\mu \mathrm{m}$ line (Ferkinhoff et al. 2010)
$>$ Modeled as a starburst
$>$ Line was $\sim 300 \mathrm{~km} / \mathrm{sec}$ blue of nominal z - consistent with emission from L2
$>$ Detection of L1 in [OIII] buried in noise...

Ivison et al. 2010

[OII]/[NII]: Yields UV Field Hardness

- $6.2 \mu \mathrm{~m}$ PAH flux ~[OIII] 88 $\mu \mathrm{m}$ line flux as for starbursts
\square ZEUS/CSO [NII] 122 um line
> [OIII] 88/ [NII] 122 ~ $2 \Rightarrow$ starburst headed by 09 stars ($\mathrm{T}_{\text {eff }} \sim 34,000 \mathrm{~K}$)
> Age of starburst $\sim 3 \times 10^{6}$ years
- Composite fit:
> 70\% -- 3 million year old starburst headed by O9 stars, forming stars at a rate $\sim 3500 / \mu$ per year.
> 30%-- NLR with $\log (\mathrm{U})$ ~ -3.3 to -3.45

NLR models Groves et al. 2004, HII region models Rubin et al. 1985

NOTE: $\mathrm{T}_{\text {eff }}$ derived from [OIII] 88/[NII] 122 ratio is not only insensitive to n_{e}, but also insensitive to O / N abundance ratio

[Ol] 146 SDSS J090122

\square Lensed ($\mu \sim 8$) galaxy @ $z=2.2558$ (Diehl et al. 2009)
\square Very strong PAH emitter (Fadely et al. 2010)
$>$ Fits M82 template quite well
$>\mathrm{L}_{\text {far }-1 \mathrm{R}} \sim 3.0 \times 10^{13} \mathrm{~L}_{\odot} / \mu$
$>\mathrm{L}_{[01]} / \mathrm{L}_{\text {FIR }} \sim 0.08 \%$
\square Detected in [OI] from component "b" in 1 hour - line flux ~ PAH $6.2 \mu \mathrm{~m} / 15$

Physics with [Ol] $146 \mu \mathrm{~m}$

$\square[\mathrm{OI}] /[\mathrm{CIII}]$ line ratios trace density, G

- [OI] only arises in PDRs...
- "Typical" line ratios
$>$ [CII]/[OI] 146 ~ 10:1
$>[\mathrm{CII}]$ [OI] 63 ~ 1:1
\square Advantage of [OI] 146
$>$ Near [CII] wavelength \Rightarrow detectable from same source
> Optically thin
\square [OI]/far-IR ~ 0.08\% \Rightarrow G ~ $10^{2}-10^{3}, \mathrm{n} \sim 10^{4}-10^{5} \mathrm{~cm}^{-3}$
Much better constrained by
 [OI] 146/[CII] ratio...

FS Lines and CCAT

CCAT-ALMA Synergy

\square ALMA 3 times more sensitive for single line detection
$>\mathrm{L}_{[\mathrm{CIII}}$ (Milky Way) $\sim 6 \times 10^{7} \mathrm{~L}_{\odot}$
$>$ Milky Way in [CII] at $\mathbf{z} \sim 3$
\square CCAT:
$>$ Enormous (> 100 GHz , multi-window) BW - redshifts
$>$ New THz windows - important for [OI], [OIII], [NII]...
$>$ Expect thousands of sources/sq. degree per window detectable in [CII] line -

Our ZEUS source density (5 in Lockman) fits these estimates at high luminosity end
> Multi (10-100s) object capability - maybe Fabry-Perot!
\Rightarrow Find sources, find lines, multi-line science
\square ALMA "zoom-in" on compelling sources
$>$ Structure
$>$ Dynamics

Conclusions

\square [CII] line emission detectable at very high z
$>$ Reveals star forming galaxies
$>$ Constrains G, and size of star-forming region
$>z \sim 1$ to 2 survey extended starbursts with local starburstlike physical conditions
\square [OI] 146 arises only from PDRs, similar science to [CII]
\square [OIII]/[NII] emission at high z
$>$ Traces current day stellar mass function - age of the starburst: ratio with [NII] 122 very tight constraints
> Also can traces physical conditions of NLR - likely detected NLR emission from composite sources
\square Future with CCAT and ALMA exciting - detect and characterize sources that are 50-100 of times fainter - [CII] from Milky Way at z ~ 3!

