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Abstract

Multiple telescope interferometry for high angular resolution astronomical imag-

ing in the optical/IR/far–IR bands is currently a topic of great scientific interest.

This paper reviews the fundamentals which govern the sensitivity of direct–detection

interferometers, and discusses the sensitivity limits imposed by the Cramér–Rao the-

orem. This theorem is used to support the argument that interferometers which have

more compact instantaneous beam patterns are more sensitive, since they extract

more spatial information from each detected photon. This favors arrays with a

larger number of telescopes, and it favors all–on–one beam combining methods as

compared to pairwise combination.
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1. Introduction

Astronomical spatial interferometry, which is the technique of interfering the radiation

gathered by several separated telescopes, is of great current interest because of the exciting

scientific potential of very high angular resolution observations, combined with the numerous

technological advances that now make optical interferometry feasible. As a result, this field

is very active, and serious investments are being made: numerous ground–based facilities are

in development, large arrays are being discussed, and ambitious space missions are being

considered. Detailed reviews of this field have been given recently1,2, which describe the

scientific motivation and results, technical challenges and approaches, existing and planned

facilities, and contain extensive bibliographies. Additional information is readily available

on the internet; see http://olbin.jpl.nasa.gov.

Of course, interferometry is very well developed at radio wavelengths, where large arrays

of telescopes such as the NRAO VLA (Very Large Array; http://www.nrao.edu) routinely

provide high angular resolution synthetic aperture imaging. Ground–based interferometry

at optical wavelengths is inherently more difficult due to the limitations imposed by at-

mospheric phase fluctuations; dealing with these fluctuations is perhaps the key issue for

ground–based systems. This provides strong motivation to consider interferometry in space.

As a result, NASA is pursuing the SIM mission3 (http://sim.jpl.nasa.gov), an optical as-

trometric interferometer with a 10m baseline, scheduled for launch at the end of the decade.

SIM will perform a wide range of science, including searches for extrasolar planets as well

as synthetic–aperture imaging of the centers of galaxies. Another important advantage of

space interferometry is the unobstructed transmission and low background over the entire

IR/far–IR/submm spectrum. Looking further into the future, infrared interferometers are

being considered for missions such as TPF4 (NASA; http://planetquest.jpl.nasa.gov)

and Darwin5, (ESA; http://sci.esa.int/darwin) which have the ambitious goal of de-

tecting and characterizing Earth–like planets around nearby stars. Direct–detection space

interferometers at very long (far–IR/submm) wavelengths using cold telescopes have also

been proposed, such as the NASA SPECS/SPIRIT concepts6–9. Such interferometers would

give the angular resolution needed to break through the spatial confusion limit10, which be-

comes severe at these long wavelengths, and would allow a detailed study of the properties of

the newly–discovered class of submillimeter–luminous, dusty galaxies at high redshifts11–13.

In spite of this high level of activity, it appears that important design considerations for

2



optical interferometers are not yet resolved. One major issue is the number of telescopes

that should be used; another issue is the method of beam combination. Of course, various

practical constraints may limit the range of design options; for instance, it is likely to be

important to minimize the number of telescopes for a space interferometer. Although a

number of papers have addressed these various issues14–24, there appears to be no general

consensus on which design approaches give the best sensitivity, or even if there is much

difference between them1. It is essential to have a full understanding of the fundamental

issues that determine the sensitivity of optical interferometers; advancing that understanding

is the goal of this paper. We will therefore ignore important technical issues, such as the

methods used to deal with atmospheric fluctuations, mechanical and thermal perturbations,

detector noise, etc., and only discuss interferometers with nearly ideal characteristics.

Our approach will focus on the instantaneous (not synthesized) angular response function

(or interferometric beam pattern) associated with a given detector (or collection of detectors)

which receive the light gathered by the interferometer. We will argue on general grounds,

supported by the Cramér–Rao lower bound on the uncertainty of statistical inference, that

it is important to make the instantaneous angular response function as compact as possible,

in order to extract the maximum amount of spatial information from each detected photon.

This argument favors certain interferometer designs over others. For instance, pairwise

beam combination in which the light from T telescopes is split and interfered on T (T −1)/2

detectors (one detector per baseline), which is essentially the approach adopted for radio

interferometry, is in general less sensitive for direct–detection interferometric imaging than

schemes in which the light from all T telescopes is coherently combined onto the detectors.

The reason for this is that the angular response functions are less compact for the case of

baseline pair combination, and each photon detected provides less information about the

spatial structure of the source. This distinction vanishes for the radio case, in which one is

dealing with amplified signals which have high occupation numbers for the photon modes.

The connections and distinctions between the optical and radio cases will be discussed in

more detail in a future paper25.

The structure of the paper is as follows. We will first review the description of electro-

magnetic (including optical) systems in terms of scattering matrices. This formalism will

be used extensively throughout the rest of the paper. Next, we will review the coherence

properties of the radiation emitted by astronomical sources, and use this to calculate the
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response of general optical systems to astronomical sources. This response can be given a

very straightforward and natural interpretation, in which incoming photons have various

probabilities to be absorbed in the different detectors in the instrument, depending on their

frequency and the angular position from which they were emitted from the source. Using this

simple model, we show that only instruments which can achieve ideal sensitivity are those

which do not “mix up” photons from different spatial or spectral “channels”. Unfortunately,

such instruments are difficult to build; interferometers do in fact mix up photons spatially.

In order to deal with this non–ideal case, we apply the Cramér–Rao limit to calculate the

limiting sensitivities of non–ideal instruments. The remaining step is to calculate the actual

response of interferometers, and their Cramér–Rao sensitivities, which we do for the simple

but illustrative case of one–dimensional arrays. The paper closes with comments on these

results and indicates areas for future work.

2. Scattering Matrix Description of Optical Systems

The response of any electromagnetic system, such as a collection of optical elements

(mirrors, lenses, etc.) but excluding detectors, may be described by a classical scattering

matrix S. Scattering matrices are common in electrical engineering26,27, where they are used

to describe linear N–port circuits:

bi =
∑
j

Sijaj (1)

The indices 1 ≤ i, j ≤ N label the ports. A set of N transmission lines attached to the

ports carry incoming waves with amplitudes ai and outgoing waves with amplitudes bi. The

standard practice is to normalize these amplitudes to give simple expressions for the power

carried by the waves; for instance, Pinc =
∑

i |ai|2. With this choice of normalization, it is

straightforward to show that a lossless circuit has a unitary scattering matrix, SS† = 11.

Reciprocity, which has its roots in time reversal symmetry and applies for most passive

circuits, implies that ST = S. By expressing the wave amplitudes in terms of voltages and

currents at the ports, the scattering matrix S may be related to more familiar quantities

such as the impedance matrix Z. Finally, we note that (classical) noise can be treated very

naturally within the framework of scattering matrix theory26,28–30. The extension to include

quantum effects, such as photon–counting statistics, is straightforward25.

We can apply the scattering matrix concept to characterize an optical system, such as

the collection of telescopes and beam–combining optics that comprise an interferometer.
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This approach was developed for antenna problems during the WW2 radar effort31, and is

particularly convenient at radio wavelengths since it allows circuit and antenna concepts to

be treated in a unified fashion. While scattering matrices are now often applied to antenna

problems32,33, they are not used very often to describe optical systems (though they do find

occasional use34). Scattering matrices are very useful for describing guided–mode optics,

which are in fact of substantial interest for astronomical interferometry35,36. Scattering

matrices are also very well–suited for problems involving the quantum–mechanical nature of

the radiation field, such as photon–counting statistics, because one directly deals with the

modes of the radiation field. For these reasons, we adopt the scattering matrix approach.

In order to make the paper reasonably self–contained, and to establish our notation, we will

review this approach in detail.

We begin by describing the radiation field in terms of incoming and outgoing plane waves.

For simplicity, we will continue to use a classical description for the electromagnetic field; it

is straightforward to adapt our formalism to the case of a quantum electromagnetic field.25

Assuming a time harmonic e+jωt time dependence, the electric field of the incoming wave

arriving at the telescope system (or antenna) can be expressed as

Einc(r) =

√
2η0

λ

∫
dΩ a(Ω) exp(+jkn̂(Ω) · r) (2)

Here a(Ω) represents the amplitude and polarization distribution of the incoming plane

waves, λ is the free–space wavelength, and η0 = 377 Ω is the free space impedance. As

usual, Ω represents the polar angles (θ, φ) with respect to the chosen coordinate system;

the unit vector n̂(Ω) = ẑ cos θ + sin θ(x̂ cos φ + ŷ sin φ) describes the direction from which a

plane wave component is arriving. Similarly, the outgoing wave can be expressed as

Eout(r) =

√
2η0

λ

∫
dΩb(Ω) exp(−jkn̂(Ω) · r) (3)

The normalization is again chosen to give simple expressions for power, for instance

Pinc =
∫

dΩ |a(Ω)|2 (4)

In the usual case of incoherent light emitted by astronomical sources, the wave amplitudes

can be considered to be random quantities with certain statistical properties.

An antenna is usually thought of as having one or more well–defined ports, or terminals,

which one can attach to other circuits, such as an amplifier. In the case of a radio telescope,
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the terminal may well be the output waveguide of a feedhorn. The situation is a little more

subtle for the case of an optical telescope system, in which the light is focused directly on the

“bare” pixels of a detector array, such as a CCD. (In reality, the distinction between optical

and radio techniques is blurring. For instance, the introduction of single–mode optical fibers

for collecting and transporting light from the focus of a telescope is completely analogous to

the use of radio feedhorns and waveguides, while ”bare pixel” detector arrays find use even at

very long (submillimeter) wavelengths.) We can imagine describing the radiation incident on

a given detector pixel, which we label by α, in terms of a modal expansion. At the detector

surface, these spatial modes may be constrained to have a nonzero amplitude only over the

region occupied by the pixel (for pixel sizes exceeding ∼ λ, this constraint makes the modes

for different pixels orthogonal, which simplifies the form of the scattering matrix). The ith

such mode for pixel α has incoming wave amplitudes aiα and outgoing wave amplitudes biα,

which we assume have the usual power normalization. We will define the terms “incoming”

and “outgoing” in reference to the telescope system rather than the detector pixels, so that

the light gathered by the telescope system which arrives at the detectors is characterized by

the amplitude biα. Assuming perfect absorption by the detector, the power absorbed can be

expressed as

Pα =
∑

i

|biα|2 (5)

Imperfect absorption by the detector (quantum efficiency below unity), as well as varying

sensitivities to the different spatial modes, can be incorporated into the definition of the

scattering matrix of the optical system, which we discuss below. In the case of a system

designed for diffraction–limited imaging, most of the light absorbed by the detector will be

contained in a single mode (or two modes, for polarization–insensitive detectors).

The telescopes and associated optical system (e.g. beam–combining optics, etc.) can be

characterized by a generalized scattering operator S. This operator acts on a Hilbert space

consisting of vectors of the form

a =


 a(Ω)

aiα


 (6)

where a(Ω) is square–integrable. The operator S can be partitioned into four blocks:

S =


 S(scat) S(rec)

S(trans) S(refl)


 (7)
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The first block, S(scat)(Ω, Ω′), describes the scattering of an incoming plane wave arriving

from Ω′ to an outgoing plane wave traveling toward Ω. The sans serif font reminds us that

this is a 3 × 3 matrix to account for polarization. The second and third blocks are off–

diagonal: S
(rec)
iα (Ω′) describes the (vector) receiving antenna pattern for the detector pixel

mode iα, while S
(trans)
jβ (Ω), describes the transmitting antenna pattern. The fourth block

is an ordinary matrix, S
(refl)
iαjβ , which represents the scattering (reflection) of the telescope

system between the various detector pixel modes. The meaning of these quantities becomes

clear when we write expressions for the outgoing waves in terms of the incoming waves:

b(Ω) =
∫

dΩ′ S(scat)(Ω, Ω′) a(Ω′) +
∑
jβ

S
(trans)
jβ (Ω) ajβ , (8)

and

biα =
∫

dΩ′ S(rec)
iα (Ω′) · a(Ω′) +

∑
jβ

S
(refl)
iαjβ ajβ (9)

Assuming that the optical system contains only reciprocal elements (e.g. no Faraday

rotation isolators, etc.), we know that the scattering operator must equal its transpose.

This implies that the transmitting and receiving patterns are the same,

S
(trans)
iα (Ω) = S

(rec)
iα (Ω) , (10)

which is the well–known reciprocity theorem for antennas. In addition, the radiation scat-

tering operator obeys

S(scat)(Ω, Ω′) = (S(scat))T (Ω′, Ω) , (11)

and that the pixel to pixel scattering matrix is reciprocal, S(refl) = (S(refl))T .

The output power emanating from a passive optical system cannot exceed the input

power, which imposes an important constraint on the scattering operator: 11−S†S must be

nonnegative definite. Combined with the reciprocity theorem, this can be used to demon-

strate that the following matrix must also be nonnegative definite:

Miα,jβ = δiα,jβ −
∫

dΩ(S
(rec)
iα (Ω))∗ · S(rec)

jβ (Ω) − ∑
kγ

(S
(refl)
kγ,iδ)

∗S(refl)
kγ,jβ (12)

In particular, the diagonal elements must be nonnegative, which implies

∫
dΩ|S(rec)

iα (Ω)|2 ≤ 1 − ∑
jβ

|S(refl)
jβiα |2 ≤ 1 (13)
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Thus, the overall normalization of the receiving patterns is not arbitrary. If we demand that

the optical system be lossless, and the detector modes are perfectly coupled (S(refl) = 0), the

receiving patterns must be orthonormal:

∫
dΩ

[
S

(rec)
iα (Ω)

]∗ · S(rec)
jβ (Ω) = δiα,jβ (14)

We now calculate the power received by any detector pixel. We assume that any imperfect

absorption (including reflection) associated with the detector pixel has been incorporated

into the definition of S. Furthermore, we assume that the detectors do not themselves

radiate into the optical system, so that aiα = 0. (The detectors are usually operated at

a low enough temperature that the thermal radiation they emit is negligible.) The power

absorbed by pixel α is

Pα =
∑

i

|biα|2 =
∑

i

∣∣∣∣
∫

dΩS
(rec)
iα (Ω) · a(Ω)

∣∣∣∣2 (15)

3. Astronomical sources

Astronomical sources emit radiation which is spatially and temporally incoherent. This

means that we should regard the amplitude a(Ω, ν) at frequency ν as a complex random

variable with mean zero, and with a correlation function of the form

〈
aq(Ω, ν)a∗

q′(Ω
′, ν ′)

〉
= Aqq′(Ω, ν) δ(Ω − Ω′) δ(ν − ν ′) (16)

Here, aq(Ω, ν) = ê∗
q(Ω) · a(Ω, ν), and q, q′ ∈ {1, 2} are vector (polarization) indices, corre-

sponding to two orthonormal polarization vectors êq(Ω), each orthogonal to the propagation

direction n̂(Ω). We note that the plane–wave expansion of the incoming field is unique in

the sense that the correlation function is diagonal in the spatial variable. Had we chosen

some other modal representation, e.g. a vector spherical harmonic expansion, the amplitude

correlation matrix would not be diagonal in the mode indices, in general.

The physical interpretation of Aqq′(Ω, ν) follows from a calculation of the flux F (p̂, ŝ, ν),

the power per unit bandwidth per unit area, in a given polarization p̂ that is incident on a

surface with normal ŝ:

F (p̂, ŝ, ν) =
1

λ2

∑
qq′

∫
dΩ n̂(Ω) · ŝ (17)

[
p̂∗ · êq(Ω) Aqq′(Ω, ν) ê∗

q′(Ω) · p̂
|1 − n̂(Ω) · p̂|2

]
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For sources occupying a small solid angle near zenith (ŝ = ẑ), the total flux for both

polarizations simplifies to

Ftotal(ν) =
1

λ2

∑
q

∫
dΩ Aqq(Ω, ν) (18)

Thus, Aqq(Ω, ν)λ−2 is the specific intensity (flux per unit solid angle) arriving from the

direction Ω in polarization êq(Ω). For unpolarized emission, we can write

Aqq′(Ω, ν) = hν n(Ω, ν) δqq′ (19)

where n(Ω, ν) is the mean photon occupation number. This simplifies to Aqq = kBT for a

blackbody in the Rayleigh–Jeans limit.

4. Response of an optical system to an astronomical source

The average power per unit bandwidth received from an astronomical source by a detector

pixel can be calculated using Eqs. (15) and (16):

〈Pα(ν)〉 =
∑
qq′

∫
dΩAqq′(Ω, ν) (20)

[∑
i

(êq · S(rec)
iα (Ω, ν))(S

(rec)
iα (Ω, ν) · êq′)

∗
]

For an unpolarized source, Aqq′(Ω, ν) = A(Ω, ν) δqq′ , this reduces to

〈Pα(ν)〉 =
∫

dΩ A(Ω, ν) Rα(Ω, ν) (21)

where we have defined the angular response function corresponding to this detector:

Rα(Ω, ν) =
∑

i

|S(rec)
iα (Ω, ν)|2 (22)

For a source which has uniform brightness over the area sampled by the response function

Rα(Ω, ν), the power received is 〈Pα(ν)〉 = mα(ν) A(Ω, ν), where the effective number of

modes mα (spatial and polarization) coupled to the detector is defined as

mα(ν) =
∫

dΩ Rα(Ω, ν) (23)

According to Eq. (13), mα(ν) ≤ ∑
i 1, and so mα(ν) cannot exceed the number of modes

received by the detector that are illuminated by the telescope.
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For the opposite extreme, we take the case of a point source located at Ωp. The power

received by one detector is

〈Pα(ν)〉 =
1

2
F (ν) λ2 Rα(Ωp, ν) (24)

where F (ν) is the flux (both polarizations) of the point source. On the other hand, for

a telescope system with total collecting area Atel, the power collected by all the detectors

cannot exceed F (ν) Atel. Thus,

∑
α

Rα(Ωp, ν) ≤ 2Atel

λ2
(25)

Since the response functions are all positive, each individual response function must also obey

this inequality. Therefore, if the response function Rα(Ω, ν) has a flat–top shape extending

over a solid angle ∆Ωα, the effective number of modes obeys

mα ≤ 2Atel ∆Ωα

λ2
(26)

This statement is often called the “antenna theorem”; one cannot increase the number of

modes coupled to a given detector without simultaneously broadening the angular response

function.

Eq.(25) suggests that we renormalize our response functions:

ρα(Ω, ν) =
λ2

2Atel

Rα(Ω, ν) (27)

so that they obey ∑
α

ρα(Ω, ν) ≤ 1 (28)

The power received by a detector (Eq. 21) can now be expressed as

〈Pα(ν)〉 =
2Atel

λ2

∫
dΩ A(Ω, ν) ρα(Ω, ν) (29)

We can discretize this integral by splitting up the source into small patches or “pixels”

centered at positions Ωs, allowing each patch to have a different size ∆Ωs, and assuming

that the source has uniform intensity across each patch:

A(Ω, ν) =
∑
s

Ā(Ωs, ν)Us(Ω) (30)
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where the indicator function Us(Ω) has a value of unity over the patch ∆Ωs, and is zero

otherwise (some sort of restriction on the form of A(Ω, ν) is necessary, since a discrete set

of data cannot uniquely determine a function of a continuous variable). This gives

〈Pα(ν)〉 =
∑
s

2∆ΩsAtel

λ2
Ā(Ωs, ν) ρ̄α(Ωs, ν) (31)

where the average of the response function over patch s is

ρ̄α(Ωs, ν) =
1

∆Ωs

∫
∆Ωs

dΩρα(Ω, ν) (32)

Finally, using this result along with A(Ω, ν) = hν n(Ω, ν) (Eq. 19), we arrive at a very

simple and illuminating expression for the average number of photons detected in a unit

bandwidth during an integration time τ :

〈Nα〉 =
∫

dν
∑
s

〈N(Ωs, ν)〉 ρ̄α(Ωs, ν) (33)

where

〈N(Ωs, ν)〉 = τ
2∆ΩsAtel

λ2
n̄(Ωs, ν) (34)

is just the maximum average number of photons (per unit bandwidth) which a single–aperture

telescope with area Atel could detect in a time τ from the solid–angle patch ∆Ωs. The

interpretation of the normalized response function is simple: ρα(Ω, ν) is the probability that

a photon of frequency ν that was emitted from position Ω and was collected by the instrument

is actually detected by detector α. The total probability for detection is at most unity,

according to Eq. (28).

If we wish, we can take the additional step of discretizing the frequency integral into

spectral channels ∆νf , which leads to

〈Nα〉 =
∑
s,f

〈N(Ωs, νf )〉 ρ̄α(Ωs, νf ) (35)

where the maximum average number of “detectable” photons in frequency channel ∆νf is

〈N(Ωs, νf )〉 = τ∆νf
2∆ΩsAtel

λ2
n̄(Ωs, νf ) (36)

and the response function is now also averaged over frequency:

ρ̄α(Ωs, νf ) =
1

∆Ωs∆νf

∫
∆νf

dν
∫
∆Ωs

dΩρα(Ω, ν) (37)
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5. Photon counting statistics and ideal instruments

It is well established that the photons counts registered by the detectors in an optical

instrument follow statistically independent Poisson distributions, so that the fluctuations of

the counts in different detectors are uncorrelated. To be more precise, this situation holds

for the case of thermal emission (from the source, the atmosphere, the telescope, etc.) in

which the mean photon occupation numbers of the modes incident on the detectors are low,

n << 1. In the high occupancy limit, n >> 1, photon “bunching” becomes important,

which changes the counting statistics and can introduce correlations among the detectors.

For now, we will discuss only the first case, n << 1, which applies to most astronomical

observations at optical and infrared wavelengths.

The previous section (Eqs. 35, 36) reminds us that in the n << 1 limit, the description

of any photon direct–detection instrument, regardless of spectral or spatial resolution, single

telescope vs. interferometer, etc., can be reduced to a “probability matrix” pα c. Here, for

simplicity, the combined spatial/spectral channel index c replaces both indices s and f :

pα c = ρ̄α(Ωs, νf ). This matrix describes the probability of a photon, which was emitted

by the source in some spatial/spectral channel c, and is collected by the instrument, to

be absorbed in a given detector α. Let λc = 〈N(Ωs, νf )〉 represent the mean number of

“incident” photons from channel c arriving at the instrument. The mean number µα = 〈Nα〉
of photons detected by detector α is given by

µα =
∑

c

pα cλc (38)

From Eq. (28), we have ∑
α

pα c ≤ 1 (39)

so that the mean number of photons detected cannot exceed the mean number of incident

photons,
∑

α µα ≤ ∑
c λc.

In most cases, we are interested in determining the quantities λc, which give the spatial

and spectral distribution of the radiation emitted by the source. How well can this be done?

We can imagine an “ideal” instrument in which photons arriving from channel c would

be detected only by a single detector, αc, with a one to one mapping between detectors

and channels. In other words, this instrument does not “mix up” photons from different

channels, and a photon detection event can be unambiguously assigned to the appropriate

channel. The corresponding probability matrix pα c is the identity matrix (or a permutation).
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The spatial and spectral resolution needed are set by our choice of bin size. Does such an

instrument exist, at least in principle? Achieving the required spectral resolution is not

a fundamental difficulty; all one needs is a large enough grating. Achieving the required

spatial resolution is a more subtle issue, since the parameters λc refer to a fixed telescope

collecting area. However, we can use a single–aperture telescope, with a diameter sufficiently

large to achieve the spatial resolution required, as long as we reduce the transmission (i.e.

use a neutral density filter) in order to keep the effective collecting area (and the parameters

λc) constant. Of course, doing so would be foolish; this argument only serves as an existence

proof.

For our “ideal” instrument, the number of photons Nc counted by the detectors are

independent Poisson random variables:

〈Nc〉 = λc (40)

〈δNcδNc′〉 = λc δc c′ (41)

where δNc = Nc−〈Nc〉. Are there other instruments, which do not have a one to one mapping

between detectors and channels, that can achieve the same sensitivity? The answer is no,

which we will demonstrate with a short proof.

We represent the photon counts in the detectors by the vector Ñ . Some sort of inversion

procedure is necessary to convert the measured detector counts Ñ into an estimate λ̂c(Ñ) of

the intensity of the source in the various channels c. This inversion procedure may or may

not be linear. However, we assume that it is differentiable, so for small perturbations

δλ̂c =
∑
α

Ac αδNα (42)

where Acα = ∂λ̂c/∂Nα. We will restrict our attention to inversion procedures which faithfully

extract small changes in the source distribution. To be precise, we will require

δλc =
〈
δλ̂c

〉
=

∑
α

Ac αδµα =
∑
α

Ac α

∑
c′

pα c′δλc′ (43)

for any type of small perturbation δλc. This means that the matrix A should be the inverse

of p: ∑
α

Ac αpα c′ = δcc′ (44)

This equation shows that A must be independent of Ñ , and so in fact only linear inversion

procedures can meet the requirements that we have set. We dismiss the case that p has no
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inverse, since such instruments are clearly inferior to our ideal instrument. Note that this

means that there must be at least as many detectors as the number of spatial/spectral chan-

nels we wish to resolve (with proper interpretation, this statement also applies to aperture

synthesis imaging; see section 8). We can now calculate the noise for some channel in our

estimated source distribution:

σ2
c =

〈
(δλ̂c)

2
〉

=
∑
α c′

(Ac α)2pα c′λc′ (45)

where we have used the fact that the photon counts are independent Poisson random vari-

ables, with 〈δNαδNα′〉 = µαδα α′ . Since we do not expect that any instrument will be more

sensitive than the “ideal” instrument, it should be possible to show that σ2
c ≥ λc, or

∑
α

(Ac α)2pα c ≥ 1 (46)

It is not difficult to demonstrate that this must in fact be true. Since (Ac α − 1)2 and pα c

are both nonnegative,

0 ≤ Tc =
∑
α

(Ac α − 1)2 pα c (47)

=
∑
α

(Ac α)2pα c − 2
∑
α

Ac αpα c +
∑
α

pα c

≤ ∑
α

(Ac α)2pα c − 2 + 1 (48)

which yields the desired inequality (46). Thus, the sensitivity of our ideal instrument cannot

be exceeded – it does indeed live up to its name.

In fact, the sensitivity of an ideal instrument, σ2
c = λc, can only be obtained when

the probability matrix pcα is simply some permutation of the identity matrix. In other

words, the instrument must be equivalent to the ideal instrument, perhaps with the detector

labels shuffled around by some permutation; it cannot allow photons from any two different

spatial/spectral channels to be detected by the same detector. To prove this, let us define

Dc = {α|pα c 	= 0} to be the set of detectors which can receive photons from channel c.

According to relations (45) and (46), an ideal instrument must obey

∑
α

(Ac α)2pα c′ = δc c′ (49)

The c = c′ equation requires that Tc = 0, which according to (47, 48) means that
∑

α pα c = 1

(no photons are lost) and that Ac α = 1 for any α ∈ Dc. On the other hand, the c 	= c′
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equations then imply that pα c′ = 0 for any α ∈ Dc, since the terms in the sum (49) must

vanish. In other words, if some detector α receives photons from some channel c, then it

cannot receive photons from any other channel c′. This completes the proof.

6. The Cramér–Rao sensitivity limit

In the previous section, we have seen that the only way to achieve the best possible sen-

sitivity for a measurement of the spectral and spatial intensity distribution of a source is

to build an instrument which separates the photons into separate spectral/spatial channels

prior to detection. Unfortunately, interferometers with separated telescopes generally can-

not achieve this goal, since the instantaneous (not synthesized) angular response function

will not be highly localized, as is the case for a single–aperture telescope, but will instead

have multiple sidelobes or fringes. In the case of a two–element interferometer, this response

function is just the single–telescope pattern, modulated by the interference fringes that cor-

respond to the baseline between the two telescopes. Thus, although these fringes can provide

much higher angular resolution than the individual telescopes, the spatial information pro-

vided by each detected photon is less than would have been obtained with a more localized

response function.

It is important to determine quantitatively the magnitude of this effect, in order to be

able to compare various options in the design of an interferometer, such as the number

of telescopes, their positions, the method of beam combining, etc. The Cramér–Rao the-

orem provides a strict lower limit for the variance of a quantity which is estimated from

a set of noisy measurements, and can be applied to determine the minimum noise in the

determination of the intensity in some spatial/spectral channel using an instrument with a

nonideal response. The Hubble Space Telescope, whose initial point spread function suffered

from spherical abberation that has since been corrected, provides a particularly well–known

example of the substantial sensitivity degradation that occurs as a result of a nonideal re-

sponse, which cannot be undone by image restoration techniques such as the maximum

entropy algorithm37. In fact, the Cramér–Rao limit was applied to exactly this situation by

Jakobsen et al.38. The Cramér–Rao theorem has also been used to evaluate similar infor-

mation loss effects in other imaging problems, for instance gamma–ray imaging in nuclear

medicine39. Finally, we point out that there is a fairly well developed literature which dis-

cusses the general role of information theory in image formation40 in a more sophisticated
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and formal manner; in addition, other types of lower bounds exist for errors in parameter

estimation problems41.

We start by quickly reviewing the Cramér–Rao theorem; the papers cited above, and

the references therein, should be consulted for more details. Let us consider an experiment

which delivers a set of measurements, denoted by the vector x̃, but which has scatter due to

measurement noise. The measurement process can described by a probability distribution

f(x̃|θ̃) to obtain a result x̃. Here the vector θ̃ represents the unknown parameters or quanti-

ties that the experiment is sensitive to, such as the source intensity distribution in our case.

The usual goal is to determine one or more of these parameters from the measured data, say

θi. In order to do this, we must construct some estimator θ̂i(x̃), which uses the measured

data to estimate θi. For simplicity, we assume that this estimator is unbiased; the results

could be generalized to include bias. The Cramér–Rao theorem states that

σ2
i =

〈
(θ̂i − θi)

2
〉

=
∫

dx̃f(x̃|θ̃)(θ̂i(x̃) − θi)
2

≥
〈(

∂ ln f

∂θi

)2〉−1

=


∫

dx̃f(x̃|θ̃)
(

∂ ln f(x̃|θ̃)
∂θi

)2


−1

A somewhat more stringent limit can also be given. First, define the matrix

Mij =

〈
∂ ln f

∂θi

∂ ln f

∂θj

〉
(50)

This is known as the Fisher information matrix, and is symmetric and non–negative definite.

In fact, it is positive–definite, unless there is some linear combination of parameters θi that

the function f(x̃|θ̃) is completely independent of, in which case we should reparameterize to

eliminate that linear combination. Thus, we assume M has an inverse, M−1, which is also

positive definite. The Cramér–Rao theorem states that C ≥ M−1, where C is the covariance

matrix of the estimators, Cij =
〈
(θ̂i − θi)(θ̂j − θj)

〉
, and the matrix inequality is understood

to mean that C − M−1 is nonnegative definite. In particular, the diagonal elements give

σ2
i ≥

[
M−1

]
ii

(51)

It is instructive to apply this result to the familiar case of an N–dimensional multivariate

Gaussian distribution of the form

f(x̃|θ̃) = (2π)−N/2(det A)1/2 (52)
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× exp


−1

2

∑
ij

(xi − θi)Aij(xj − θj)




for which one knows that the maximum likelihood estimators θ̂i = xi are efficient, and

〈(xi − θi)(xj − θj)〉 = (A−1)ij. In fact, for this case one finds Mij = Aij, so the Cramér–Rao

bound actually gives the true variance, σ2
i = (A−1)ii.

We now apply this to the photon detection problem. The detector counts have indepen-

dent Poisson distributions, so

f(Ñ |λ̃) =
∏
α

µNα
α

Nα!
exp(−µα) (53)

so
∂ ln f

∂λc

=
∑
α

(
−pαc +

Nαpαc

µα

)
(54)

and

Mcc′ =

〈
∂ ln f

∂λc

∂ ln f

∂λc′

〉
(55)

=
∑
α

pαcpαc′

µα

=
∑
α

pαcpαc′∑
c′′ pαc′′λc′′

by virtue of 〈NαNα′〉 = µαµα′ + µαδαα′ . The Cramér–Rao sensitivity limit for channel c is

σ2
c ≥

(
M−1

)
cc

(56)

Eqs. (55) and (56) are key results, since they give us a quantitative way to set lower limits

to the sensitivity of optical instruments. Alternatively, for simplicity we may wish to use

the first (weaker) form of the Cramér–Rao bound, σ2
c ≥ (Mcc)

−1, which is the result quoted

by Jakobsen et al.38:

σ2
c ≥

[∑
α

p2
αc∑

c′ pαc′λc′

]−1

(57)

It is easy to verify that either form gives σ2
c = λc in the case of an ideal instrument, for

which pαc = δααc . These sensitivity limits depend on the values of λc, i.e. the structure

of the source. For the case of a point source located in channel c, Eq. (57) gives σ2
c =

λc (
∑

α pαc)
−1 ≥ λc; the equality holds if all of the photons are detected. The sensitivity

limit given by the stronger bound (Eq. 56) is typically only somewhat worse than this. The

reason that the point source sensitivity does not vary much with the instrument response

is that we are simply summing up all the photons counted by all the detectors; it doesn’t

matter much how the photons are distributed among the detectors. Thus, calculations which

only compare the sensitivities of interferometers to point sources do not tell the whole story.
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7. Single–mode interferometers

The primary reason for constructing interferometers is to obtain high spatial resolution;

the overall field of view is often a secondary concern. Thus, it is interesting to examine

the case of an interferometer in which each telescope collects light from a single diffraction–

limited beam, which sets the field of view. For simplicity, we will assume that the inter-

ferometer consists of T identical telescopes, each with area A1. The total collecting area

is AT = TA1. The receiving pattern corresponding to the single diffraction–limited beam

of telescope t (where t = 1 . . . T ) will be denoted by S
(rec)
t (Ω, ν), following our established

notation. These receiving patterns are assumed to be identical, apart from the fact that

the telescopes are located at different positions. We denote the telescope positions with re-

spect to an arbitrary (but common) origin using the displacement vectors rt. The receiving

patterns can then be written as

S
(rec)
t (Ω, ν) = exp[+ikn̂(Ω) · rt]S

(rec)(Ω, ν) (58)

Here the pattern S(rec)(Ω, ν) denotes the receiving pattern of a telescope located at the

origin. Each of these telescopes produces a single–mode output beam, described by an

outgoing wave amplitude bt:

bt(ν) =
∫

dΩS
(rec)
t (Ω, ν) · a(Ω, ν) (59)

The receiving patterns from different telescopes t 	= t′ are orthogonal to a high degree:

∫
dΩ

[
S

(rec)
t (Ω, ν)

]∗ · S(rec)
t′ (Ω, ν) (60)

=
∫

dΩ |S(rec)(Ω, ν)|2 exp[−ikn̂(Ω) · (rt − rt′)]

≈ 0

due to the oscillations of the exponential factor. This means that the telescopes are not

coupled significantly (as can happen for closely packed antenna arrays), and it is there-

fore possible to achieve nearly perfect coupling to the single–mode outputs. For this case,

the telescope patterns are orthonormal (see Eq. 14). If necessary, coupling losses can be

accounted for in the beam combiner, which we introduce next.

The purpose of the beam combiner is to interfere the light from different telescopes before

it is detected. There are various ways to do this: the telescopes can be combined in pairs,
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analogous to the way that radio correlation interferometers operate, or all the light from

the telescopes can be interfered simultaneously, as is done in Fizeau interferometry. Beam

combination is a key issue for interferometer design. We can describe any type of beam–

combining scheme using a scattering matrix S(comb). This matrix tells us how the wave

amplitudes bt from the single–mode telescope feeds are coupled to the wave amplitudes biα

arriving at the detectors:

biα(ν) =
∑

t

S
(comb)
iα,t bt(ν) (61)

By combining Eqs. (59) and (61), we have

biα =
∑

t

S
(comb)
iα,t (ν)S

(rec)
t (Ω, ν) · a(Ω, ν) (62)

For astronomical sources, we are interested in the response function Rα(Ω, ν) (see Eq. 22),

which in this case is

Rα(Ω, ν) =
∑

i

∣∣∣∣∣
∑

t

S
(comb)
iα,t (ν)S

(rec)
t (Ω, ν)

∣∣∣∣∣
2

(63)

These response functions must obey the inequality expressed in Eq. (25), with the factor

of 2 removed since we are collecting only a single mode (single polarization). For single–mode

interferometers, we would define

ρα(Ω, ν) =
λ2

AT

Rα(Ω, ν) (64)

and we would also omit the corresponding factor of 2 in Eq. (36). Thus, the set of equations

(36, 55, 56, 58, 63, 64) can be used to provide a sensitivity bound for any interferometer

configuration and beam combining method. In fact, we will interpret this bound as a good

estimate of the actual sensitivity, which is reasonable in the limit that many photons are

detected, since the counting statistics become nearly Gaussian and maximum likelihood

estimators are asymptotically efficient.

Although we have assumed identical telescopes, it is straightforward to generalize our

expressions to include heterogeneous arrays. There is one small remaining issue, which has

to do with the proper treatment of the various array configurations (including the effects

of Earth rotation) that are used for aperture synthesis imaging. This will be tackled in the

next section, where we describe the calculated results for simple uniform one–dimensional

arrays.
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8. Application to One–Dimensional Arrays

A homogeneous one–dimensional array provides a nice case study because the parameter

space is limited and the computations are fast, and yet the principal implications of the

Cramér–Rao bound can be readily demonstrated. The interferometer consists of T identical

equally–spaced telescopes spread along the x axis, each with length L1, and the overall

“collecting length” is LT = TL1. We choose uniform illumination, so that the single–element

amplitude pattern has the form

S(rec)(θ) =

√
L1

λ
sinc

(
πL1

λ
θ
)

(65)

Here θ is the angle from zenith, and we have assumed that L1 >> λ, which allows a small–

angle approximation to be made. The FWHP of this single–element pattern is 0.886λ/L1.

For our comparison, we use L1 = 1000λ, although the normalized sensitivities do not depend

on the telescope size. For telescope t located at position xt with respect to the origin,

S
(rec)
t (θ) = exp

[
i
2πxt

λ
θ
]
S(rec)(θ) (66)

The response of the interferometer for a given choice of beam combination is still given by

Eq. (63); however, the proper normalization for the detection probability function is

ρα(θ, ν) =
λ

LT

Rα(θ, ν) (67)

We compare two types of beam combination. The first case is the usual pairwise combi-

nation, in which we are focusing on measuring the T (T − 1)/2 fringe visibilities and fringe

phases that can be obtained from the various telescope “baseline” pairs. In order to do this,

the light from each telescope must first be split into T −1 beams. We assume that the fringe

measurement is done using four detectors per baseline, as shown in Fig. 1. The scattering

matrix of the beam–combiner produces the following four linear combinations:

b1(t, t
′) =

1

2
√

T − 1
(bt + bt′)

b2(t, t
′) =

1

2
√

T − 1
(bt − bt′)

b3(t, t
′) =

1

2
√

T − 1
(bt + ibt′)

b4(t, t
′) =

1

2
√

T − 1
(ibt + bt′)
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Here bt and bt′ represent the single–mode wave amplitudes corresponding to the light col-

lected by telescopes t and t′, and the four amplitudes bi(t, t
′) represent the various combina-

tions of light from the two telescopes that are being detected to produce the corresponding

photon counts Ni(t, t
′). The total number of detectors in this scheme is 2T (T − 1). It is

straightforward to verify that the first two beam combinations produce symmetric angular

response functions, while the latter two produce antisymmetric response functions (apart

from a constant offset term). Thus, both types of beam combination are needed in order

to uniquely determine the image of a source. The latter two beam combinations are read-

ily produced using a 50% beamsplitter; at microwave frequencies, the equivalent device is

known as a “90◦ 3 dB hybrid”. The first two combinations can be obtained using the optical

equivalent of a microwave “180◦ 3 dB hybrid”; such devices are currently being investigated

for nulling interferometry42,43. All four combinations can be gotten simultaneously by using

a two–way power splitter (or a 50% beamsplitter), as shown in Fig. 1. It is straightforward

to verify that for this beam combination scheme, all of the power (photons) collected by

the telescopes is absorbed by the detectors. Equivalently, the scattering matrix of the beam

combiner is unitary, and only couples input ports to output ports.

As shown in Fig. 2, the second type of beam combination method we investigate is the

standard “Butler matrix” beamforming network44, which is used with microwave phased–

array antennas to produce a set of localized beams, each pointing in a different direction.

This approach is analogous to the “image plane” beam recombination used in Fizeau in-

terferometry. Although similar free–space optical techniques could be used for microwave

beamforming, Butler beamformers use guided–wave components (coaxial or waveguide) and

are therefore much smaller physically.

The key idea behind the Butler matrix is to produce a linear stepped “phase gradient”

across the antenna or telescope array, in order to steer the beam of the array. Mathematically,

the T outputs bα which are sent to the photon–counting detectors are given in terms of the

T single–mode inputs bt from the telescopes by:

bα =
1√
T

T∑
t=1

bt exp
[
i
2παt

T

]
(68)

which in essence is just a discrete Fourier transform. The “Butler matrix” is actually a

hardware implementation of this concept that is analogous to the Fast Fourier Transform

algorithm. Power conservation, or unitarity of the beam combiner scattering matrix, follows
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from Parseval’s theorem. The typical angular response functions for pairwise and Butler

combining are compared in Fig. 3.

We consider array configurations of 3, 6, and 10 uniformly–spaced telescopes, as shown

in Table 1. The source brightness distribution in θ is discretized into Nbins bins or “pixels”,

extending across the field of view of an individual telescope. Since the maximum baseline

of all of the array configurations shown in Table 1 is Bmax = 45L1, we use Nbins = 41 spatial

pixels in the calculations. The pixel–averaged response functions, or detection probabilities,

are calculated using a one–dimensional analog of Eq. (32). As shown in Table 1, the calcula-

tion also includes Nspacings different telescope spacings, ranging from close–packed to dilute

arrays. In order to account for these various configurations, we imagine that there are ac-

tually NspacingsNdetectors different “virtual” detectors, where Ndetectors is the physical number

of detectors in any one configuration. (Note that we must have Nbins < NspacingsNdetectors in

order to reconstruct the discretized image of the source; otherwise, the Fisher information

matrix (Eq. 55) will be singular.) The detection probabilities for any one configuration are

reduced by the factor (Nspacings)
−1. In essence, we are splitting up the total observing time

into Nspacings different sessions of equal duration, one per configuration; the total probability

over the course of the entire integration for a photon to be detected by the array in some

particular configuration is (Nspacings)
−1. Of course, this ignores the time overhead that array

reconfiguration would require in reality. As a check, we verified that in all cases the total

combined probability for detecting photons from the central spatial pixels c in any of the

“virtual” detectors α was near unity:
∑(NspacingsNdetectors)

α=1 pαc ≈ 1.

We also consider two types of sources: uniform sources, and point sources. For uniform

sources, we set λc = 1 for all Nbins spatial pixels; for point sources, we set λc = 1 only for

the central pixel, and set all others to zero.

Figure 4 shows the results for a uniform source with Butler beam combination. The

vertical axis is the normalized Cramér–Rao sensitivity bound, calculated using Eq. (56).

This sensitivity would be unity for an ideal instrument, that is a single telescope with

a large enough aperture to resolve the spatial pixels, but with the same total effective

collecting area as the interferometer (i.e. with a neutral density filter or attenuator to

reduce the total number of detected photons to match the interferometer). A sensitivity

above unity implies that the use of an interferometer incurs a penalty, due to its inability

to fully determine which spatial pixel each detected photon came from. As Fig. 4 shows,
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adding more telescopes improves the sensitivity; the reason for this is that the quality of the

instantaneous beam pattern improves. For this particular example, the sensitivity penalty

for the Butler–combined interferometer is a factor of ∼ 3 for a 10–telescope array. The

variation of the sensitivity across the field of view is seen to scale with the inverse of the

single–element power pattern, as shown by the dotted line in Figure 4. The reason for this

is that the Cramér–Rao sensitivity bound includes the effects of noise “crosstalk” between

the spatial pixels that arise from the nonideal interferometer beam patterns.

Figure 5 shows the comparable uniform–source results with pairwise beam combination.

In this case, the normalized sensitivity (which takes out the effect of the total collecting

area) shows no improvement as the array size is increased. This is because the quality of

the instantaneous beam patterns remains unchanged: the beam patterns are always those of

two–element interferometers. Again, the sensitivity scales inversely with the single–element

pattern; however, the sensitivity penalty relative to an ideal instrument is now a factor of

∼ 10. The comparison between the Butler–combined and the pairwise–combined 10–element

arrays for uniform sources is shown more directly in Fig. 6; the Butler–combined array enjoys

a sensitivity advantage in excess of a factor of 3 for this example.

A similar comparison for the case of point sources is shown in Figs. 7, 8, and 9. The

normalized Cramér–Rao sensitivities for the point source itself are quite comparable in all

cases, which we expect, since we can in essence sum up all of the photons detected in order

to estimate the brightness of the source. However, the sensitivity for the off–source pixels

tells a much different story. Here, Butler combination enjoys a large sensitivity advantage,

about an order of magnitude for the 10–element array. Note that for the Butler–combined

arrays, the sensitivity of the off–source pixels is actually substantially better than for the

on–source pixels. This is highly desirable: it gives the array more sensitivity to see faint

sources in the presence of a brighter nearby object. An ideal instrument, such as a large

single–aperture telescope, would in fact have σc = 0 for the off–source pixels, since the

detectors corresponding to these pixels do not receive any photons. (Of course, this is not

entirely true for real telescopes systems due to scattered light.)

9. Concluding Remarks

In this paper, we have made the case that the instantaneous angular response functions

of an interferometer govern its sensitivity: interferometers with more compact and localized
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response functions are more sensitive. The physical reason for this is simple and clear: such

interferometers obtain more spatial information per photon detected. We have demonstrated

this effect by numerically calculating the Cramér–Rao sensitivity limits for the simple case

of homogeneous, equally spaced, one–dimensional arrays which use either Butler or pairwise

beam combining. These calculations show that Butler beam combining, which is analo-

gous to the image–plane combination used in Fizeau interferometry, is substantially more

sensitive, which we expect since the response functions are more compact.

The Cramér–Rao bound appears to be a very interesting and useful tool for the study and

optimization of interferometer designs. The approach presented in this paper can readily

be applied to two–dimensional arrays of any configuration and which use any type of beam

combination method. Our approach, which is based on scattering matrices, is especially well

suited to describe beam combination using guided–wave (integrated) optics. Although we

have discussed only homogeneous arrays, in which all telescopes are identical, the formalism

can readily be adapted to handle heterogeneous arrays. The Cramér–Rao sensitivity bounds

were obtained for very idealized circumstances, in which we have included only the counting

statistics of the photons arriving from the source. However, it is again not difficult to extend

our results to include effects such as background noise, due to thermal emission from the

telescope or atmosphere, detector dark current and/or read noise, etc. Although these effects

are important in real applications and should be included in more realistic calculations, we

have ignored them in order to limit the parameter space and to focus on the fundamental

issues involved. In closing, we encourage other workers who are involved in interferometer

design to investigate the applicability of the Cramér–Rao approach for determining the

sensitivity tradeoffs for real arrays, and for a range of astrophysical problems.
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Table 1. Array Configurations

T a N b
spacings Sc

min Sc
max ∆Sc Bd

max

3 44 1.0 22.5 0.5 45.

6 17 1.0 9.0 0.5 45.

10 9 1.0 5.0 0.5 45.

a The number of telescopes.

b The number of element spacings.

c Minimum, maximum, and step size

for the element spacings.

d The maximum baseline.

All dimensions are scaled to the

telescope size L1.
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FIG. 1: A schematic diagram of the pairwise beam combination scheme for a single baseline between

telescopes t and t′. The inputs t and t′ on the left represent the single–mode beams from the two

telescopes, after division T − 1 ways. The four outputs on the right are sent to photon–counting

detectors.
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FIG. 2: A schematic diagram of the “Butler matrix” all–on–one beam combination scheme. The

inputs on the left represent the single–mode beams from all T telescopes; the T outputs on the

right, which are sent to photon counting detectors, each contain some contribution from all T

telescope inputs.
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FIG. 3: This figure compares the angular response functions for pairwise and Butler beam combin-

ing. The top panel shows the typical response corresponding to two telescopes in a pair–combined

array; the separation between the telescopes is 27L1 for this example. The bottom panel shows the

typical response of a Butler–combined array; in this case, there are 10 uniformly–spaced telescopes,

with a distance 3L1 between telescopes, so that the array size is 27L1.
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FIG. 4: Variation of the normalized sensitivity with telescope array size for the case of Butler

beam combination. The source is assumed to have a uniform spatial distribution. The horizontal

axis gives the spatial position θ in units of λ/L1; note that the FWHP of the single-element

pattern is 0.886λ/L1. The vertical axis gives the Cramér–Rao normalized sensitivity bound (see

text for details). For Butler beam combination, increasing the array size improves the normalized

sensitivity. The dotted line shows that the sensitivity degradation toward the edges of the field of

view scales as the reciprocal of the single–element beam pattern.
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FIG. 5: This figure is similar to Fig. 4, but is calculated for the case of pairwise beam combination.

The normalized sensitivity is essentially independent of array size in this case.
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FIG. 6: Comparison of normalized sensitivities for Butler vs. pairwise beam combining for a 10–

telescope array when observing uniform sources. For this case, the sensitivity advantage for Butler

combining is more than a factor of 3.

34



FIG. 7: This figure is similar to Fig. 4, but is calculated for the case of a point source in the center

of the field instead of for a uniform source. Note that although the normalized sensitivity to the

point source is nearly constant, the sensitivity for off–source pixels improves substantially with

array size.
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FIG. 8: This figure is similar to Fig. 7, but now pairwise beam combination is assumed. For this

case, there is no sensitivity improvement with array size.
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FIG. 9: This figure compares normalized point source sensitivities for Butler combination and

pairwise combination for a 10–element array. Although the sensitivities to the point source itself

are comparable, Butler combination is an order of magnitude more sensitive for off–source pixels.
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