Quasioptical Systems Paul F. Goldsmith

Section 5.4 ■ Refractive Focusing Elements

 TABLE 5.1 (Continued)

Material	Index of Refraction	Loss Tangent (×10 ⁻⁴)	Frequency (GHz)	Reference
Macor	2.38	275	380-390 ³⁷	[STUM89]
Magnesium oxide ³⁸	3.132	0.46	92.8	[KOMI91]
Mica	2.54-2.58	13-24	120-1000	[IGOS74]
Mylar	1.73-1.76	360-680	120-1000	[IGOS74]
Mylar	1.83	100 + 100/-50	140	[SOBE61]
Mylar	1.73	380	654	[KOOI94]
Mylar	1.83 ± 0.05	264 ± 7	890	[ADE71]
Mylar ³⁹	1.717 ; 1.752 ± 0.002	237 ± 7	1500	[SMIT75]
Nylon	1.729-1.735	85-158	60-300	[AFSA87]
Nylon	3.066	145	70-110	[GOY94]
Nylon ⁴⁰	1.7267 ± 0.0002	96-269	130-180	[BIRC81]
Paraffin ⁴¹	1.50	34	289	[STOC93]
Paraffin ⁴²	1.51	80	289	[STOC93]
Plexiglas	1.599 ± 0.008	32.7 ± 2.6	50	[CULS62]
Plexiglas 36	1.6065-1.6115	78–135	60-300	[AFSA87a]
Plexiglas	1.60 ± 0.05		140	[SOBE61]
Plexiglas	1.61 ± 0.016	_	143	[DEGE66]
Plexiglas ⁴³	1.6067 ± 0.0002	87-264	150-600	[BIRC81]
Plexiglas	1.61 ± 0.05	_	210	[SOBE61]
Plexiglas	1.616 ± 0.0007		245	[SIMO83a]
Plexiglas	1.589-1.562	250-690	300-1800	[CHAM71a]
Plexiglas	1.62 ± 0.016		343	[DEGE66]
Plexiglas	1.593 ± 0.012		890	[CHAM71b]
Polyethylene ⁴⁴	1.5172 ± 0.0015	3.8 ± 0.2	26–38	[SHIM88]
Polyethylene ⁴⁵	1.536 ± 0.0007	1.73 ± 0.02	35	[COOK74]
Polyethylene	1.461	0.85 ± 0.15	60-1500	[CHAN71a]
Toryemyrene	1.401	(f/30 GHz)	00 1500	[CIIIIV/Iu]
Polyethylene	1.51865-1.51875	3.6-4.4	90-270	[AFSA87a]
Polyethylene	1.52 ± 0.014	_	143; 343	[DEGE66]
Polyethylene ⁴⁶	1.5246 ± 0.0002	3–6	150-960	[BIRC81]
Polyethylene ⁴⁷	1.5138 ± 0.0002	3-8	150-1110	[BIRC81a]
Polyethylene	1.53	3.7	380-390 ³⁷	[STUM89]
Polyethylene	1.461 ± 0.023		890	[CHAM65]
Polyethylene	1.508 ± 0.001	10 ± 2	890	[TSUJ82]
Polyethylene ⁴⁸	1.4711 ± 0.0003	9.7 ± 0.3	891	[QIU92]
Polyethylene ⁴⁹	1.519-1.520	_	1300-6000	[AFSA76]
Polyethylene	1.518 ± 0.0015	29.4 ± 3	1500 ⁵⁰	[SMIT75]
Polypropylene ⁴⁴	1.5037 ± 0.0005	5.0 ± 0.3	26-38	[SHIM88]
Polypropylene	1.501-1.507		29-36	[LYNC82]
Polypropylene	1.5014 ± 0.002	1.54 ± 0.08	35	[AFSA84]
Polypropylene	1.4971 ± 0.00003	13.6 ± 1.4	60	[AFSA90]
Polypropylene	1.50155-1.50175	5.6–8.5	90–270	[AFSA87a]
Polypropylene	1.488 ± 0.001	25 ± 3	890	[TSUJ82]
Polypropylene	1.499 ± 0.003		890	[CHAM71b]
Polypropylene ⁵¹	1.4875 ± 0.0003	30.1 ± 0.9	891	[QIU92]
Polystyrene ⁴⁴	1. 5944 ± 0.0005	8.7 ± 0.7	26–38	[SHIM88]
Polystyrene	1. 590 ± 0.008	7.2 ± 0.6	50	[CULS62]
Polystyrene ⁵²	1.5912 ± 0.0002	19-48	120-960	[BIRC81a]
Polystyrene	1.59 ± 0.005	20 + 20/-10	140	[SOBE61]
Polystyrene	1.60 ± 0.016	20 1 20/-10	143	[DEGE66]
Polystyrene	1.59 ± 0.005	_	210	[SOBE61]
rotystytene	1.39 ± 0.003		210	[103aOcj

81

 TABLE 5.1 (Continued)

Material	Index of Refraction	Loss Tangent (×10 ⁻⁴)	Frequency (GHz)	Reference
Macor	2.38	275	380–390 ³⁷	[STUM89]
Magnesium oxide ³⁸	3.132	0.46	92.8	[KOMI91]
Mica	2.54-2.58	13-24	120-1000	[IGOS74]
Mylar	1.73-1.76	360-680	120-1000	[IGOS74]
Mylar	1.83	100 + 100/-50	140	[SOBE61]
Mylar	1.73	380	654	[KOOI94]
Mylar	1.83 ± 0.05	264 ± 7	890	[ADE71]
Mylar ³⁹	1.717 ; 1.752 ± 0.002	237 ± 7	1500	[SMIT75]
Nylon	1.729–1.735	85–158	60–300	[AFSA87]
Nylon	3.066	145	70–110	[GOY94]
Nylon ⁴⁰	1.7267 ± 0.0002	96–269	130-180	[BIRC81]
Paraffin ⁴¹	1.50	34	289	[STOC93]
Paraffin ⁴²	1.51	80	289	[STOC93]
Plexiglas	1.599 ± 0.008	32.7 ± 2.6	50	[CULS62]
Plexiglas 36	1.6065-1.6115	78–135	60-300	[AFSA87a]
Plexiglas 50	1.60 ± 0.05	76-133	140	[SOBE61]
	1.60 ± 0.03		140	
Plexiglas		97 264		[DEGE66]
Plexiglas ⁴³	1.6067 ± 0.0002	87–264	150-600	[BIRC81]
Plexiglas	1.61 ± 0.05	_	210	[SOBE61]
Plexiglas	1.616 ± 0.0007	250 (00	245	[SIMO83a]
Plexiglas	1.589-1.562	250–690	300–1800	[CHAM71a
Plexiglas	1.62 ± 0.016	_	343	[DEGE66]
Plexiglas	1.593 ± 0.012		890	[CHAM71b
Polyethylene ⁴⁴	1.5172 ± 0.0015	3.8 ± 0.2	26–38	[SHIM88]
Polyethylene ⁴⁵	1.536 ± 0.0007	1.73 ± 0.02	35	[COOK74]
Polyethylene	1.461	0.85 + 0.15 ($f/30 \text{ GHz}$)	60–1500	[CHAN71a
Polyethylene	1.51865-1.51875	3.6-4.4	90-270	[AFSA87a]
Polyethylene	1.52 ± 0.014	_	143; 343	[DEGE66]
Polyethylene ⁴⁶	1.5246 ± 0.0002	3–6	150-960	[BIRC81]
Polyethylene ⁴⁷	1.5138 ± 0.0002	3-8	150-1110	[BIRC81a]
Polyethylene	1.53	3.7	380-390 ³⁷	[STUM89]
Polyethylene	1.461 ± 0.023		890	[CHAM65]
Polyethylene	1.508 ± 0.001	10 ± 2	890	[TSUJ82]
Polyethylene ⁴⁸	1.4711 ± 0.0003	9.7 ± 0.3	891	[QIU92]
Polyethylene ⁴⁹	1.519-1.520	_	1300-6000	[AFSA76]
Polyethylene	1.518 ± 0.0015	29.4 ± 3	1500 ⁵⁰	[SMIT75]
Polypropylene ⁴⁴	1.5037 ± 0.0005	5.0 ± 0.3	26–38	[SHIM88]
Polypropylene	1.501-1.507	0.0 2 0.0	29-36	[LYNC82]
Polypropylene	$1.501-1.507$ 1.5014 ± 0.002	1.54 ± 0.08	35	[AFSA84]
Polypropylene	1.4971 ± 0.00003	13.6 ± 1.4	60	[AFSA90]
Polypropylene	1.50155-1.50175	5.6-8.5	90–270	[AFSA87a]
Polypropylene	1.488 ± 0.001	25 ± 3	890	[TSUJ82]
Polypropylene	1.488 ± 0.001 1.499 ± 0.003	<u> </u>	890	[CHAM71b
	1.4875 ± 0.003	30.1 ± 0.9	890 891	•
Polypropylene ⁵¹				[QIU92]
Polystyrene ⁴⁴	1. 5944 ± 0.0005	8.7 ± 0.7	26–38	[SHIM88]
Polystyrene	1.590 ± 0.008	7.2 ± 0.6	50	[CULS62]
Polystyrene ⁵²	1.5912 ± 0.0002	19–48	120–960	[BIRC81a]
Polystyrene	1.59 ± 0.005	20 + 20/-10	140	[SOBE61]
Polystyrene	1.60 ± 0.016	_	143	[DEGE66]
Polystyrene	1.59 ± 0.005		210	[SOBE61]

TABLE 5.1 (Continued)

Matarial	Index of	Loss Tangent $(\times 10^{-4})$	Frequency (GHz)	Dafaranaa	
Material	Refraction	(×10 ')	(GHZ)	Reference	
Polystyrene	1.60 ± 0.016	_	343	[DEGE66]	
Pyrex ⁵³	2.11 ± 0.03	28-40	250-400	[BREE67]	
Quartz ⁵⁴	2.108	0.13	9.03 (300 K)	[GEYE95]	
Quartz ⁵⁵	2.142	0.07	9.06 (77 K)	[GEYE95]	
Quartz ⁵⁴	2.103	_	7.75 (300 K)	[GEYE95]	
Quartz ⁵⁵	2.140		7.77 (77 K)	[GEYE95]	
Quartz-c	2.1063 ± 0.0004	0.60 ± 0.06	60	[AFSA90]	
Quartz—o ⁵⁶	2.1059 ± 0.0002	1.0 ± 0.3	245	[DUTT86]	
Quartz—e ⁵⁶	2.1533 ± 0.0002	1.4 ± 0.5	245	[DUTT86]	
Quartz ⁵⁷	2.132 ± 0.026	_	890	[CHAM65]	
Quartz ⁵⁸	2.114 ± 0.009	_	890	[CHAM71b]	
Quartz ⁵⁸	2.1133 ± 0.0004	2.49 ± 0.08	891	[QIU92]	
Quartz—o	2.1073-2.2072	59	600–6000	[RUSS67]	
Quartz—e	2.1541-2.2502	59	600–6000	[RUSS67]	
Quartz—o ⁶⁰	2.113–2.214		900–6000	[LOWE73]	
Quartz—e ⁶⁰	2.156–2.162		900-6000	[LOWE73]	
Rexolite	1.599	4	13 (300 K)	[GEYE95]	
Rexolite	1.582	2.5	13 (77 K)	[GEYE95]	
Rexolite ^{44, 61}	1.5962 ± 0.0005	8.9 ± 0.7	26–38	[SHIM88]	
Rexolite ⁶¹	1.59	15–40	120-550	[SIMO84]	
Rexolite	1.57 ± 0.005	20 + 20/-10	140	[SOBE61]	
Rexolite ⁶¹	1.56 ± 0.016	20 + 20/-10	143	[DEGE66]	
Rexolite	1.58 ± 0.010	_	210	[SOBE61]	
Rexolite	1.59 ± 0.03	_	343	[DEGE66]	
Rexolite ⁶¹	1.59 ± 0.010 1.58 ± 0.02	_	300–10800	[GILE90a]	
	1.58 ± 0.02 1.59	27	380–390 ²⁸	[STUM89]	
Rexolite		4–8	90–350	[AFSA84]	
Sapphire—	3.064035–3.0640	4-0	90–330	[AF3A64]	
perpendicular	3.066 ± 0.0003	2.9 ± 0.2	168	[DRYA92]	
Sapphire—				<u></u>	
parallel	3.047 ± 0.0003	1.87 ± 0.09	168	[DRYA92]	
Sapphire ⁶³	3.094	5.8	180	[AFSA94b]	
Sapphire ⁶⁴	3.064	6.2	180	[AFSA94b]	
Sapphire	J.00 /	8	469–479	[GOY94]	
Sapphire—o ⁶⁵	3.0666-3.0649	4-9	90-400	[AFSA87b]	
Sapphire—e ⁶⁵	3.4056-3.4039	4–8	90-400	[AFSA87b]	
Sapphire—o ³³	3.069–3.260	_	900–6000	[LOWE73]	
Sapphire—e ³³	3.415–3.708		900–6000	[LOWE73]	
Silicon ⁶⁶	3.417–3.418	6–13	90-450	[AFSA84]	
Silicon ⁶⁷	$3.417-3.418$ 3.4182 ± 0.0008	7.6 ± 0.9	245	[DUTT86]	
Silicon ⁶⁸	3.4102 ± 0.0000	7.0 ± 0.9	243	[DC1100]	
1500 Ω · cm	3.419	8	300	[AFSA94b]	
Silicon ⁶⁸	3.419	o	300	[AI'SA940]	
	2.417	9	300	[AFSA94b]	
2000 Ω · cm	3.417	9	300	[AFSA940]	
Silicon ⁶⁸	2.414	2.5	200	LVEG VOVES	
11000 Ω · cm	3.414	2.5	300	[AFSA94b]	
Silicon ⁶⁹	3.416–3.419	2–12	600–4200	[RAND67]	
Silicon ⁷⁰	3.4155–3.4200		900–10,500	[LOWE73]	
Spectralon ⁷¹	1.31	213	291	[STOC93]	
Spinel ⁷²	2.8942-2.8945	5–14	90–350	[AFSA84]	

TABLE 5.1 (Continued)

Material	Index of Refraction	Loss Tangent	Frequency (GHz)	Reference
		(×10 ⁻⁴)		
Styrofoam ⁷³	_	0.53-0.81	200-260	[KERR92]
Styrofoam	1.017 ± 0.001	_	245	[SIMO83]
Styrofoam ⁷⁴	1.05	3.2	654	[KOOI94]
Styrofoam ⁷⁵	1.05	1.2-2.4	654	[KOOI94]
Teflon	1.434	2.0	9.93 (300 K)	[GEYE95]
Teflon	1.431	0.08	9.95 (77 K)	[GEYE95]
Teflon	1.429 ± 0.0003	2.17 ± 0.06	26-38	[SHIM88]
Teflon ⁷⁶		0.48 ± 0.04	34.9	[AFSA84]
Teflon ⁷⁶	1.397 ± 0.004	0.48 ± 0.01	35	[COOK74]
Teflon ⁷⁷	1.433 ± 0.007	3.2 ± 0.3	50	[CULS62]
Teflon	1.43855-1.43885	5.3-6.9	90-270	[AFSA87a]
Teflon ⁷⁸	1.4330 ± 0.0002	2.5-17	120-1110	[BIRC81]
Teflon	1.43 ± 0.005	30 + 30/-15	140	[SOBE61]
Teflon	1.44 ± 0.014	_	143	[DEGE66]
Teflon	1.44 ± 0.015		210	[SOBE61]
Teflon	1.44	8.5	299	[STOC93]
Teflon	1.44 ± 0.014		343	[DEGE66]
Teflon	1.391 ± 0.017	_	890	[CHAM65]
Teflon	1.4333 ± 0.0003	13.1 ± 0.4	891	[QIU92]
Titanium dioxide ⁷⁹	9.54 ± 0.01	5 ± .5	10.125	[SEEL62]
TPX ⁸⁰	1.4589 ± 0.00013	_	34.5	[LYNC82]
TPX	1.458 ± 0.0003	4.77 ± 0.05	34.5	[JONE76a]
TPX	1.458 ± 0.002	4.27 ± 0.21	35.3	[AFSA84]
TPX	1.45815-1.4589	5.0-8.3	70-270	[AFSA87]
TPX	1.4576 ± 0.0003	6.3 ± 0.54	245	[JONE84]
TPX	1.46	14	289	[STOC93]
TPX ⁸¹	1.4600 ± 0.0002	5.6-13	300-1200	[BIRC81]
TPX	1.456 ± 0.002	_	890	[CHAM71b]
TPX	1.453 ± 0.002	21 ± 2	890	[TSUJ82]
TPX	1.4584 ± 0.0002	10.7 ± 0.3	891	[QIU92]
TPX ⁸²	1.4556-1.4564	-	1000-6000	[AFSA76]
TPX	1.447 ± 0.0015	132 ± 7	1500 ⁵⁰	[SMIT75]
Trans-Tech 2-11183	3.74–3.76	30–45	120–550	[SIMO84]
Trans-Tech 2-111 ⁸³	3.7298 ± 0.0008	17.4 ± 1.4	245	[DUTT86]
Zinc selenide	3.00-3.05	8–50	18–40	[SHIM91]
Zinc selenide	3.1246 ± 0.002	33.1 ± 1.0	891	[QIU92]
Zinc sulfide	2.90-2.93	5–13	18-36	[SHIM91]

¹ Some of the values included in this table were obtained from curves presented in various references, while for others, only representative or average values are given. In these latter cases the range of values given generally reflects the variation over the frequency range covered rather than measurement uncertainty. For measurements at a single frequency, limits given are the experimental uncertainties. Most materials, for example, have loss tangents that increase with increasing frequency, but an interesting exception is polypropylene [AFSA87a], while other materials (e.g., crystal quartz) have relatively sharp resonances in the submillimeter region. For most accurate and complete data, it is advisable to consult the references cited. All data obtained at room temperature unless otherwise noted. A cross-reference between common and chemical names of a number of materials is given in Table 5.2

 $^{^2}$ Type AL23, 99.5% pure Al $_2$ O $_3$ produced by Friedrichsfeld, Mannheim, Germany. The range of data given includes 14 samples in the 30–40 GHz range, 6 samples at 380 GHz, but only 1 sample at 140 GHz, where the errors reflect the statistical uncertainties of the measurements.

TABLE 5.1 (Continued)

- ³ 999 alumina containing less than 0.1% MgO manufactured by Coors Porcelain Company.
- ⁴ 995 alumina containing less than 0.5% CaOMgSiO₂ manufactured by WESGO.
- ⁵ 995 alumina produced by Ampex Corporation.
- ⁶ 99.7% chemically pure sample from Sumitomo Electric Industry. Virtually identical results obtained at 96.5 GHz.
- ⁷ Ceradyne Ceralloy type 418S 99.5% BeO containing about 0.5% magnesium trisilicate flux.
- 8 Hot-pressed material containing 0.25% lithia flux, manufactured by the Union Carbide Corporation.
- ⁹ Type K-150 hot-pressed 99.5% chemically pure material with density = 2.9723 g/cm^{-3} , obtained from National Beryllia Corporation, Haskell, NJ. The uncertainty in the index of refraction represents the average deviation for n over the frequency range studied,
- 10 Isopressed material with density 2.9086 g/cm⁻³, obtained from National Beryllia Corporation, Haskell, NJ. The uncertainty in the index of refraction represents the average deviation for n over the frequency range studied. See reference for dependence of index of refraction of beryllia on density of material.
- ¹¹ Type K-150; 99.5% chemically pure material obtained from National Beryllia Corporation, Haskell, NJ.
- 12 Sample from Denka prepared by chemical vapor deposition method; impurity content \leq 10 parts per million.
- ¹³ Grade HP material obtained from the Carborundum Company, Niagara Falls, NY. The index of refraction shows considerably more variation with frequency. The absorption coefficient and thus the loss tangent are remarkably similar for the two crystal orientations.
- ¹⁴ Grade A material obtained from the Carborundum Company, Niagara Falls, NY. The index of refraction of this material is relatively independent of frequency. The loss tangent has a large frequency variation, as well as a dependence on crystal orientation that becomes greater at higher frequencies.
- ¹⁵ The measurements reported here cover the frequency range 1500 to 10,500 GHz.
- ¹⁶ Synthetic diamond grown by chemical vapor deposition. Data cover 120 to 900 GHz for index of refraction and 75 to 200 GHz for loss tangent; the latter drops with increasing frequency over the range of the measurements.
- ¹⁷ RT/Duroid is a glass-microfiber-reinforced polytetrafluoroethylene material produced by Rogers Corporation, Chandler, AZ.
- ¹⁸ Fluorogold is a registered trademark of Fluorocarbon Inc. and is an aggregate of aligned grains of glass in a Teflon (PTFE) network often used as a low-pass filter in detector systems. The data in this line pertain to the electric field perpendicular to the direction of alignment of the glass grains in the material.
- ¹⁹ As in note 18, but for electric field parallel to the direction of alignment of the glass grains in the material.
- ²⁰ Fluorosint consists of Teflon alloyed with mica and is manufactured by Polypenco Ltd., P.O. Box 56, Welwyn Garden City, Hertfordshire AL7 1LA, United Kingdom.
- ²¹ Infrared-grade material from Nippon Silicon Glass Company; OH content approximately 8 parts per million.
- ²² Corning type 7490 UV-grade SiO₂ material.
- ²³ Corning type 7971 titanium silicate (7% TiO₂ by weight) SiO₂.
- ²⁴ Type Spectracil WF water-free SiO₂ manufactured by Thermal American Fused Quartz Company, Montville, NJ.
- ²⁵ Type WF is a low-water-content material produced by Thermal American Fused Quartz Company, Montville, NJ.
- ²⁶ Type Dynasil 4000 is an infrared-grade window material produced by the Dynasil Corporation, Berlin, NJ.
- ²⁷ Infrasil low-water-content material.
- ²⁸ Combination of results obtained using different measurement techniques.
- ²⁹ The measurements cover the frequency range 600 to 3600 GHz; the index of refraction is approximately 1.970 at the upper frequency limit.
- ³⁰ High-resistivity ($\ge 10^7$ Ω · cm) GaAs with chromium doping concentration of 2×10^{16} cm⁻³; sample #D3, manufactured by Hughes.

TABLE 5.1 (Continued)

- ³¹ High resistivity ($\geq 10^7 \ \Omega \cdot \text{cm}$) GaAs with chromium doping concentration of $5 \times 10^{15} \text{ cm}^{-3}$; sample #1089, manufactured by MA/COM.
- 32 10 to 20 Ω · cm material from Exotic Materials, Costa Mesa, CA.
- ³³ At 300 K; measurements were also made at 1.5 K. There is considerable frequency structure in the absorption coefficient and thus the loss tangent, so that synoptic data are not very useful; consult the reference for details.
- ³⁴ Kapton made by Dupont. It is a birefringent material; the measurements reported here are made at 45 degrees to the optical axis, and cover the frequency range of 1500 to 10,500 GHz.
- ³⁵ Thallium bromide-iodide samples from Harshaw Chemical Company, Solon, OH. The first value of the index of refraction is that obtained from the waveguide Fabry-Perot measurement, while the second is the average value from the measurements made during the waveguide reflection measurement. The uncertainties in each are estimated by the authors ([BRID82]) to be about 0.25. The values of the loss tangent are from the Fabry-Perot method with uncertainties suggested by the authors.
- ³⁶ Thallium bromide-chloride samples from British Drug House, Poole, England; see note 35.
- ³⁷ Results obtained from three different samples and employing different measurement techniques.
- ³⁸<100> face single crystal produced by Tateko Chemical Industry.
- ³⁹ The two different values for the index of refraction indicate a significant birefringence for Mylar. The measurements cover the range of 1500 to 10,200 GHz.
- ⁴⁰ Material obtained from G. H. Bloore Ltd, 480 Honeypot Lane, Stanmore, Middlesex HA7 1JD, United Kingdom. Loss tangent values from [BIRC81b].
- 41 48°C melting point material.
- ⁴² 72°C melting point material.
- ⁴³ Sample obtained by casting material supplied as PMMA type 2 powder by RAPRA, Shawbury, Shrewsbury, Worcestershire SY4 4NR, United Kingdom. Loss tangent values from [BIRC81].
- ⁴⁴ Average values for n and $\tan \delta$ together with standard deviations over the frequency range of measurements.
- ⁴⁵ Ridgidex 2000 high density material.
- ⁴⁶ Sample from extruded rod supplied by Polypenco Ltd (P.O. Box 56, Welwyn Garden City, Hertfordshire AL7 1LA, United Kingdom) formed from UHMW-1900 manufactured by Hercules Ltd, 1 Great Cumberland Place, London W1 H8L, United Kingdom. Loss tangent values from [BIRC81].
- ⁴⁷ Sample obtained by casting material supplied as LDPE type 2 powder by RAPRA, Shawbury, Shrewsbury, Worcestershire SY4 4NR, United Kingdom. Loss tangent values from [BIRC81].
- 48 High density material.
- ⁴⁹ The index of refraction of polyethylene is substantially invariant over the 1000 to 6000 GHz frequency range with the exception of two features at approximately 2200 and 4000 GHz. The loss tangent varies significantly with a particularly prominant resonance at 2200 GHz; see reference for details.
- ⁵⁰ The reference reports measurements from 1500 to 10,500 GHz.
- ⁵¹ Sintered material.
- ⁵² Sample obtained by casting material supplied as PS type 2 powder by RAPRA, Shawsbury, Shrewsbury, Worcestershire, SY4 4NR, United Kingdom. Loss tangent values from [BIRC81].
- 53 Loss tangent of 280×10^{-4} at 400 GHz and 400×10^{-4} at 600 GHz; the index of refraction pertains to the entire frequency range given.
- ⁵⁴ Normal to c axis.
- 55 Parallel to c axis .
- ⁵⁶ Cross-cut material grown by Sawyer Research Products, Eastlake, OH.
- ⁵⁷ Crystal cut with the optical axis perpendicular to the plane faces of the sample.
- ⁵⁸ Orientation not specified.
- ⁵⁹ There is considerable structure in the absorption of crystal quartz, which is particularly evident in the data for the ordinary ray given in [RUSS67] and also in [LOWE73]. Additional information is presented in Chapter 8, Table 8.1.