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Abstract. Stability tests based on the Allan variance method have become a standard procedure for the evaluation
of the quality of radio-astronomical instrumentation. They are very simple and simulate the situation when
detecting weak signals buried in large noise fluctuations. For the special conditions during observations an outline
of the basic properties of the Allan variance is given, and some guidelines how to interpret the results of the
measurements are presented. Based on a rather simple mathematical treatment clear rules for observations in
“Position-Switch”, “Beam-” or “Frequency-Switch”, “On-The-Fly-” and “Raster-Mapping” mode are derived.
Also, a simple “rule of the thumb” for an estimate of the optimum timing for the observations is found. The
analysis leads to a conclusive strategy how to plan radio-astronomical observations. Particularly for air- and
space-borne observatories it is very important to determine, how the extremely precious observing time can be
used with maximum efficiency. The analysis should help to increase the scientific yield in such cases significantly.
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1. Introduction

Allan variance measurements have been demonstrated
as a useful tool for the characterization of the stabil-
ity of radio-astronomical equipment such as Millimeter
or Submillimeter-receivers or large bandwidth back-ends
(Schieder et al. 1985; Kooi et al. 2000). Particularly for the
development of acousto-optical spectrometers (AOS) at
the Kölner Observatorium für Sub-Millimeter Astronomy
(KOSMA) the method has played a very important role,
because it provides clear evidence that the spectrometers
are well suited for the use at an observatory by means of a
reliable test laboratory procedure (Tolls et al. 1989). The
simple definition of the Allan variance makes it very easy
to apply such measurements also for the characterization
of the stability of other instruments, a very elementary
case is the definition of the quality of a simple Lock-In
amplifier for example.

For a real time spectrometer, as used in radio-
astronomy with many simultaneously operating frequency
channels, it is a very important condition that all channels
are behaving identically in a statistical sense. Therefore,
the use of the Allan variance for the investigation of the
performance of the spectrometer is based on the assump-
tion that there are no differences between different fre-
quency channels. That this is not always correct is evi-
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dent. Thus, it is always necessary to verify the similarity
of all frequency channels of the spectrometer by investi-
gating the baseline noise of measured spectra for exam-
ple. Typical problem areas for instance are light scatter
problems in acousto-optical spectrometers (AOS), where
speckles may affect individual channels more heavily than
others. The same is true for filterbanks which have occa-
sionally same peculiar channels even in a well maintained
back-end system. But in all normal cases of well behaved
instrumentation, the Allan variance plot is a most useful
method to precisely characterize the instrumentation in
use.

In general, observations at an observatory are done
with the available instrumentation as is, and it can not
be modified or even improved by the observer. On the
contrary, the observer has to find the correct observing
parameters in order to use the available hardware in a
most economic way. It is the purpose of this paper to
develop a strategy for an optimization of the observing
process. For this the knowledge of the stability parame-
ters is decisive. Once this information is available from
an Allan variance measurement for example, it should
be a rather straightforward matter to determine the es-
sential parameters like length of integration per position
on sky et cetera. The following mathematical treatment
analyses the commonly used observing methods, i.e. “Po-
sition-”, “Beam-” or “Frequency-Switch”, “On-The-Fly”
(OTF) measurements or “Raster-Mapping” based on the
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information contained in the Allan variance plot. As a re-
sult practical guidelines for the most efficient observing
method are found, which can be used at any radio obser-
vatory. Particularly, all space- or air-borne observatories
require a most efficient use of the extremely precious ob-
serving time, since any loss can usually not be compen-
sated by a simple increase in observatory time. But also
for ground-based observatories the results found in the
following should be very useful.

2. Definition of the Allan variance

If a test procedure is defined for use at any time and at
any location, it needs to be as simple and unique as pos-
sible. Therefore, we understand the Allan variance as the
ordinary statistical variance of the difference of two con-
tiguous measurements (see also Rau & Schieder 1984).
One has to consider a signal-function s(t), which is the
instantaneous output signal of a spectrometer channel or
of a continuum detector for example. The output is now
integrated for a time interval T representing an estimate
of the mean signal which is stored as spectrometer data
in the computer:

x(T, t) = 1/T
∫ t

t−T
s(t′)dt′. (1)

The expectation value of x(T, t) is therefore identical
with the expectation of s(t). For the observation of weak
signals, a certain number N of differences of two of
these data, a “signal-measurement” xs and a “reference-
measurement” xr, are subtracted from each other:

d = xs − xr (2)

so that the desired signal alone becomes visible when av-
eraging. Typically, each of the two measurements are done
at different times, after the telescope has moved between
two positions on sky.

In order to obtain a plausible estimate of the error of
the difference we use the standard definition of the vari-
ance:

σ2
d(T ) = 〈(d − 〈d〉)2〉 = 〈d2〉 − 〈d〉2.

The brackets ”〈〉” stand for the expectation value. In com-
parison, this definition is similar to the original definition
of the Allan variance (Allan 1966), if one considers a situa-
tion, where the expectation value of the difference is zero
which is practically “normal” during radio-astronomical
observations:

σ2
A(T ) = 1/2〈d2〉·

For further treatment we use the standard definition of the
variance, but leave the factor of 1/2 in place for historical
reasons, since it was already introduced by Allan in 1966.
Thus we use1:

σ2
A(T ) = 1/2〈(d− 〈d〉)2〉 = 1/2[〈d2〉 − 〈d〉2]. (3)
1 This original definition through the difference of samples

may be altered by using the ratio of contiguous data instead.

Note that with this new definition we consider also the
possibility that the mean of the difference may not be
zero. In case there is radiometric noise only, this expression
defines the noise of a single measurement xs or xr alone
thanks to the factor of 1/2.2

If we apply now Eq. (1), we get:

σ2
A = [σ2

s (T ) + σ2
r (T )]/2− [σ2

s (T )σ2
r (T )]1/2gsr(T )

with

gsr(T ) =
〈(xs − 〈xs〉)(xr − 〈xr〉)〉

[〈(xs − 〈xs〉)2〉〈(xr − 〈xr〉)2〉]1/2 , (4)

σ2
s (T ) = 〈(xs − 〈xs〉)2〉 and σ2

r (T ) = 〈(xr − 〈xr〉)2〉·

gsr(T ) is the normalized cross-correlation function of the
two data sets xs and xr. It should be understood that the
expectation values are the means averaged over the time t.
In other cases it might be the mean of a large number
of spectrometer pixels for example. Both cases should be
equivalent for the discussion here.

If we have the same statistics for both, “s” and “r”
(σ2

r (T ) = σ2
s (T ) = σ2(T )), then we get finally:

σ2
A(T ) = σ2(T )[1− gsr(T )].

According to this expression the Allan variance is always
smaller than the normal variance of the data sets as long
as there is no “anti-correlation” with negative gsr(T ). The
measurement of differences therefore removes all contri-
butions from the noise which are correlated. This reflects
the simple fact that the impact of slow drift noise on the
signal to noise ratio can be removed by signal modulation
techniques, as is commonly applied during observations
in radio-astronomy or when using Lock-In amplifiers in
laboratory experiments. It also tells immediately that fast
switching does not help whatsoever, if there is no correla-
tion as is typical for pure white noise.

We have not yet made any particular assumption
about the source of the signal- and the reference-data.
For our application here, the two data “s” and “r” are de-
rived from the same output signal s(t) of one spectrometer
channel. The two acquisition periods of length T for the
integration of xs and xr must therefore occur one after the
other in order to avoid any undesirable overlap between
the two measurements. For an unequivocal definition of
the instrumental Allan variance we assume that all “s”
and “r” measurements are contiguous without any dead

The corresponding ”ratio-variance” is then: σ2
r (T ) = 1/2 ×

〈[xs/xr − 〈xs/xr〉]2〉.
In case the rms of the noise is small as compared with the mean
〈s(t)〉, one can easily show that σ2

r (T ) = σ2
A(T )/〈s(t)〉2. This

new definition has the advantage to properly calibrate the data
even at varying gain in the system.

2 In general one has to consider the fact that there is
only a finite data set available for the calculation of a vari-
ance. Therefore, instead of Eq. (3), one should use the stan-

dard definition with σ2
A(T ) = 1/2

N−1

∑N

n=1
(dn − d)2 with d =

1/N
∑N

n=1
dn.
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time in between. In real life, when observing, there will be
always some unavoidable dead time, since the telescope
needs to be moved between the On- and the Off-position
or there is time needed for data transfer etc. Any delay will
increase the impact of slow drift noise, and it will there-
fore result in a different appearance of the system noise.
Such effects will be discussed in the next chapter.

3. The role of the minimum

For a given integration time the signal output of one spec-
trometer channel is described by Eq. (1). We can describe
the instantaneous noise signal s(t) before integrating us-
ing the (in this case not normalized) auto-correlation func-
tion γ(τ), but here as a function of delay time τ :

γ(τ) = 〈(s(t+ τ) − 〈s(t+ τ)〉)(s(t) − 〈s(t)〉)〉· (5)

The integrated signals “x” have a new auto-correlation
function ΓT (τ):

ΓT (τ)=〈(x(T, t + τ)− 〈x(T, t+ τ)〉)(x(T, t) − 〈x(T, t)〉)〉,

and we get after some manipulation, when using Eqs. (1)
and (5):

ΓT (τ) = 1/T 2

∫ T

−T
(T − |t|)γ(t+ τ)dt. (6)

According to the definition of the Allan variance in Eq. (3)
we have now:

σ2
A(T ) = ΓT (0)− ΓT (T ). (7)

Frequently, instead of the auto-correlation function γ(τ),
the noise power spectrum S(f) is used for the description
of noise. Since the signal s(t) is real valued, one can write
(see e.g. also in Barnes et al. 1971; Vessot 1976):

γ(τ) =
∫ ∞

0

S(f) cos(2πfτ)df and (8)

S(f) = 4
∫ ∞

0

γ(τ) cos(2πfτ)dτ.

How the correlation function behaves in low order approx-
imation for a noise spectrum like S(f) ∝ 1/fα is easily
found using Eq. (8) for sufficiently small τ > 0:

γ(τ) = gc − gατα−1 for 1 < α ≤ 3,
= gc − g1 log(τ) for α = 1 (flicker noise)
= gc + gα1/τ1−α for 0 < α < 1
= g0δ(τ) for α = 0 (white noise).

(9)

The parameters gc, gα, g1, g0 describe the actual contri-
bution to the correlation function. In all cases we have:
γ(−τ) = γ(τ). According to Eq. (5), γ(0) is identical with
the expectation value of the square of the signal, which is
equivalent to the total power contained in the noise fluctu-
ations, and it has to be finite. Consequently, 1/fα power
spectra also have to stay finite at frequencies close to zero,
at least for α ≥ 1, since the integral over the noise power
spectrum S(f) for zero τ must not diverge for the same

reason (see Eq. (8) for τ → 0). It means that 1/fα spec-
tra cannot exist at very small f ! It is easy to deal with
the divergence problem by introducing a lower cut-off fre-
quency for spectra where α ≥ 1 (see e.g. Barnes et al.
1971). On the other hand, for 0 ≤ α < 1 the power spec-
tra must have an upper cut-off frequency because of the
same arguments. Thus, white noise in this sense has to be
“band-limited” which is automatically the case in any real
experiment due to inevitable time constants for example.
The special case of “flicker noise” (α = 1) requires both, a
lower and an upper cut-off frequency, in order to be realis-
tic. Consequently, the formulas (9) are valid within limits
for τ , which are also defined by the appropriate cut-off
frequencies. Important for the following treatment is that
for 1 < α ≤ 3 Eq. (9) is valid also for τ → 0. The range
0 < α ≤ 1 we do not consider any further, since these noise
power spectra don’t seem to be observable under normal
circumstances, at least with standard radio-astronomical
equipment.

In this approximation we have now for the Allan vari-
ance according to Eqs. (6), (7), and (9):

σ2
A(T ) = gα

4(2α−1−1)
α(α+1) Tα−1 1 < α ≤ 3

= g0/T α = 0 (white noise).
(10)

For α > 1 Eq. (10) is valid for integration times T smaller
than the characteristic correlation time of the drift noise
and larger than is determined by the highest frequency
components of the noise. These two assumptions apply in
all cases considered here.

If we assume a simple power law for the drift contri-
bution with a well defined α, and if we consider the addi-
tional presence of radiometric noise, or “white noise”, we
expect the Allan variance to have the following structure
as a function of integration time:

σ2
A(T ) = a/T + bT β (β = α− 1).

It is general experience with radio-astronomical as well
as ordinary laboratory equipment that the slope of the
drift contribution is found somewhere between β = 1 and
β = 2, which corresponds to 1/f2- and 1/f3-noise respec-
tively. Good examples of such correlation functions are
the spontaneous decay of excited molecular states with a
simple exponential correlation function, or emission from
a thermal source with a Gaussian correlation function.
When expanded in lowest order approximation, they re-
sult in terms with β = 1 and 2 respectively. Chaotic pro-
cesses will typically lead to power-laws somewhere in be-
tween. We have never found an indication of the presence
of 1/f -noise in any of our instruments which would con-
tribute with a horizontal slope in the Allan variance plot.

Within the white noise part of the Allan plot, i.e. the
regime with the slope of “−1”, the radiometer equation
must be valid:

σ2
A(T ) =

〈s(t)〉
BFlT

(11)
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Fig. 1. Artificial data set generated by random numbers (left) with white noise of Gaussian distribution (top), drift noise
(middle), and combined noise (bottom). Each data point corresponds to a sample integrated for 1 s while the fluctuation
bandwidth was set to 600 kHz. The drift noise is calculated by filtering white noise with a sufficiently broad boxcar time-filter
(width > Tmax in the Allan variance plot). To the right the (relative) Allan variance plots of all three noise spectra are depicted.
The white noise appears with a slope of −1, the drift noise with a slope of approximately +1. The combination of both results
in a typical Allan plot with a minimum at some fairly well defined minimum time.

BFl is the “fluctuation bandwidth” of the spectrometer of
the frequency channel of the spectrometer, which is de-
fined as:

BFl =
[
∫∞

0 P (f)df ]2∫∞
0 P 2(f)df

(12)

(see e.g. Kraus 1980 and references therein). P (f) is the
power response function of the frequency channel to a
monochromatic input at frequency f . BFl is always larger
than the resolution-bandwidth δRes of the channel, so that
the radiometric noise should be somewhat smaller than
often is expected. Typically BFl is more than 50% larger
than δRes.

In most practical cases it is very useful to refer to
the particular integration time in the Allan variance plot
where the minimum occurs. This minimum describes the
turn-over point where the radiometric noise with a slope
of −1 in the logarithmic plot becomes dominated by the
additional and undesired drift noise (see Fig. 1). Above
the minimum time the rms of the measurements be-
comes much larger than is anticipated by the radiome-
ter equation alone. Intuitively, the minimum time might
appear as an upper limit for the integration on individ-
ual positions during radio-astronomical observations, but
the Allan variance plot offers a lot more detailed advice

when planning the most efficient observing strategy under
the given circumstances. Since any additional noise above
the radiometric level is very unfavorable, one has to find
the optimum integration time, where the loss due to in-
evitable dead time during slew of the telescope etc. is as
little as possible, and where the impact of drift contribu-
tions is nearly negligible at the same time. To find this
best compromise is the goal of the following chapters.

By use of the minimum time TA of the variance we can
now rewrite the above equation with:

σ2
A(T )
〈s(t)〉2 =

1
BFlTA

(1/t+ tβ/β) with t = T/TA. (13)

In a mathematical sense the minimum time appears rather
naturally as the decisive parameter for the description of
the plot. It is obvious that at the minimum the variance
is already significantly larger than the radiometric value,
for β = 1 it is doubled for example.

The slope of the drift part in the Allan variance plot
is, as is seen in Fig. 1, also one of the important parame-
ters for the characterization of the instrument. Therefore,
we can conclude that the minimum time, the fluctua-
tion bandwidth, and the slope at large integration time
are the three parameters which fully characterize the in-
strument in a statistical sense. All three parameters are
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directly accessible from the Allan variance plot once there
are sufficient data collected for a reliable evaluation. It is
interesting to note that generally the outcome of an Allan
variance test looks nearly identical to previous ones as
long as the instrumentation used for the test is not al-
tered. This is particularly useful for checking the health
of an instrument from time to time. Certainly, there are
other methods to describe the noise performance of a ra-
diometer like the plot of the noise power spectrum or the
correlation function or else, but it seems rather natural to
use the Allan variance plot, since it is directly related to
the normal observing procedure when observing an “On”-
and an “Off-position” with a radio-telescope.

If the fluctuation bandwidth BFl is changed the mini-
mum also shifts due to the changing level of white noise,
but, despite the change of the leading factor, Eq. (13) is
not altered due to the normalization of the time with the
Allan variance minimum time. How the radiometric con-
tribution is decreasing with increasing fluctuation band-
width is clear from the radiometer equation. However, the
drift contribution should not change, since it does not de-
pend on the shape of the filter-function of the actual spec-
trometer channel. The minimum therefore shifts to smaller
times with increasing BFl like

T ′A = TA(BFl/B
′
Fl)

1/(β+1). (14)

This formula should help when considering the stability
of the spectrometer output while co-adding adjacent pix-
els for example. (The problem, how the fluctuation band-
width changes when co-adding, is not so easily solved. This
is discussed in the Appendix.)

Co-adding frequency pixels of a spectrometer output
is standard practice in radio-astronomy when dealing with
very broad emission lines e.g. from other galaxies. Thus
it is not uncommon to finally discuss spectra with an ef-
fective fluctuation bandwidth of the order of 50 MHz by
binning several spectrometer channels. A typical minimum
time of a complete radiometer system at an observatory
is somewhere around 30 s or so at a resolution of 1 MHz
of the spectrometer. According to Eq. (14) one would ex-
pect a shift of the minimum time to values somewhere
between 4 and 8 s for the bins. A much larger band-
width one has to deal with, when measuring continuum
signals with large bandwidth bolometers. A typical effec-
tive bandwidth may be of the order of some 50 GHz. In
this case the minimum of the Allan variance moves to val-
ues between 0.1 and 0.8 s, when assuming the origin of the
white noise is still just radiometric while the drift noise re-
mains as before. It is clear that the integration time used
for sampling on each position may be a few seconds in the
first case, but has to be less than 100 msec in the second.

4. Using the information contained in the Allan
variance plot

As was mentioned above, the Allan variance plot provides
information about what to expect in case there are no gaps

in time between the corresponding measurements “signal”
(On) and “reference” (Off). This is very close to the stan-
dard situation during observing, but now the presence of
dead time has to be included into the discussion. When in-
vestigating the simple description of the Allan variance as
a function of integration time from above it seems plausi-
ble that the plot should also provide all information about
the impact of drift noise, if there is dead time between the
two measurements. How to do this is fairly straightfor-
ward, and, in order to keep things short, we present the
mathematical treatment only briefly.

4.1. Position-Switch observations

Position-Switch measurements with one signal integration
(On) per reference measurement (Off) are very common
for the observation of single positions in an extended
source for example. In other cases Beam-Switch with a
wobbling secondary mirror or Frequency-Switch measure-
ments are applied, since these methods seem to be more
promising for the resulting signal to noise ratio. In terms
of a more mathematical treatment, all these methods are
identical, only the typical time scale is different. In prac-
tice some dead time needs to be included in the observing
procedure, but both, On- and Off-integration, are assumed
to be of equal length3. Following Eq. (1) we have for the
signal- and the reference-measurement:

xs(T, t) = 1/T
∫ t

t−T
dt′s(t′),

xr(T, t) = 1/T
∫ t+Td+T

t+Td

dt′s(t′)

when including the delay time Td between the end of
the On-integration and the begin of the Off-integration.
For the error estimate of difference of these two measure-
ments we get now with the help of Eqs. (5), (6), and with
σ2

1(T, Td) = ΓT (0)− ΓT (Td + T ) (similar as in Eq. (7)):

σ2
1(T, Td)
〈s(t)〉2 =

2
BFlTA

(1/t+ 1/βf(t, d)), (15)

t = T/TA, d = Td/TA with
f(t, d) = t+ 3/2d, β = 1, and
f(t, d) = [t+ d]2, β = 2.
It is possible to derive suitable expressions for arbitrary
values of β, but in the following treatment we concentrate
on the two extreme cases β = 1 and 2 only. σ2

1(T, Td)
describes now the noise found with one single pair On and
Off. It is most efficient to move the telescope only every
second time so that the observing sequence is On–Off/Off–
On/On–Off... instead of On–Off/On–Off/On–Off...

3 The assumption of equal length is only valid for identical
noise levels of both measurements xs and xr. If the emission
from the two positions is very different and not small in com-
parison to the receiver noise temperature, an equal length of
the two integrations is no longer a proper choice. This would
apply when studying emission from the sun for example, but
in radio-astronomy, it would be an exceptional situation.
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(This is also true for Beam-Switch measurements!) In
this case we have for the duration of each complete cycle
with one On- and one Off-integration:

Tc = 2T + Td.

Usually, the measurement is repeated several times and
the result is co-added to improve the signal to noise ratio.
Then we have K such pairs, which are measured within
a total observing time TObs. We get therefore for a given
observing time TObs:

TObs = KTc.

Since the variance should develop like 1/K, we have finally
for the variance of the complete observation on one On-
position4.

σ2
K(T, Td)
〈s(t)〉2 = 1/K

σ2
1(T, Td)
〈s(t)〉2 (16)

=
4

BFlTObs
(1/t+ f(t, d)/β)(t+ d/2).

Any realistic drift scenario can be described by this for-
mula, and the result must be located within the range of
the two limiting values of β. For a useful calculation it is
now mandatory that the information about the minimum
time TA is known from an Allan variance measurement.

Figure 2 shows the shape of Eq. (16) as a function of
the relative integration time t for a few values of d. For
each d > 0 the function has exactly one fairly broad min-
imum, and it is plausible that only in this minimum the
observation can be done with maximum efficiency. Any
other t leads to a higher noise level, i.e. to lower efficiency
within a given observing time. This can be explained by
the facts that with very short integration a lot of time is
wasted while moving the telescope, and that at very long
integration time the drift noise starts to deteriorate the
signal to noise ratio on the other hand. In Fig. 3 the opti-
mum integration time at the minimum of the variance is
shown for both cases β = 1 and 2 as a function of the rela-
tive dead time d. The preferred relative integration time t
is always significantly smaller than unity, which leads to
the important conclusion that the integration time should
always be considerably smaller than the Allan variance
minimum time. With a realistic drift noise contribution
(1 ≤ β ≤ 2) the optimum integration time will be lo-
cated somewhere between the two solid lines in the plot.
For the figure, also those limits for the integration time
have been computed, where the rms-noise is increased by
less than 1% as compared to the optimum. The dotted
curves indicate these limits for both β, and it is appears
that these regions overlap largely. The hatched area in the
plot indicates where this overlap-region is found. It means
that for any realistic scenario it is always possible to find
an integration time with almost perfect noise performance

4 At long total observing time the reduction of the variance
like 1/K can be proven for any realistic noise power spectrum
when using the fact that the noise correlation function must
stay finite for τ → 0 (see also above).

independent on the actual drift characteristics of the sys-
tem. Consequently, the precise knowledge of the drift slope
β is not really essential for the optimization procedure.

Fig. 2. The development of the rms of Position-Switch mea-
surements as a function of integration time for a drift slope
of β = 1 in the Allan variance plot (see Eq. (16)). The curves
are calculated for several delay times between On- and Off-
position (d = 0, ..., 0.25). The dotted curve connects all minima
of the curves and represents the optimum integration time for
all delays. The values of the delay time d as well as of the inte-
gration time are given in units of the Allan variance minimum
time.

As was mentioned before, with a standard low reso-
lution spectrometer one typically finds an Allan variance
minimum of a complete radiometer system in the range
of 30 s or so. Chopped measurements, using a wobbling
secondary telescope mirror for example, are considered as
the ideal method for point-like sources to reduce the im-
pact of drift noise on the appearance of the baselines of
the spectra. If the chop delay, i.e. the time to move the
subreflector between the two positions, needs 100 msec
for example, the optimum integration time per position
is found near 4 s following Eq. (16). The situation seems
to be different for the case d = 0, as it would apply for
Frequency-Switch measurements for example, since the
switch between the two nearby frequencies takes negligible
time. But, as is visible in Fig. 2, the increase in rms noise
is fairly marginal (≤1%) even for integration times T up
to 14% of TA. This means, in all practical cases it is of
no use to switch at high speed, on the contrary, the effi-
ciency of the observation might become affected, if dead
time is involved. Even for spectra at moderately reduced
frequency resolution the required integration time does
not drop significantly below 1 s. It is therefore important
to note, that a higher chop frequency is only required for
continuum measurements with very large bandwidth.

The ideal, theoretical limit for the observing efficiency
is reached, when effectively all integration time is spent
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Fig. 3. Optimum integration time as a function of On-Off
delay for the two extreme drift contributions with β = 1 and
β = 2 as found from Eq. (16). The dotted curves represent the
intervals where the rms is increased by 1% maximum for both
values of β. The hatched area defines the regime where the rms
increase is less than 1% independent on the actual value of β. In
this area the preferred choice of the integration time is found.
The values of the delay time d as well as of the integration time
are given in units of the Allan variance minimum time.

on the On-position and if there would be no dead time
involved. In this case we have:

σ2
th(T )
〈s(t)〉2 =

1
BFlTObs

·

The best possible efficiency relative to this theoretical per-
formance is therefore:

η = [σ2
th(T )/σ2

K(T, Td)]1/2 (17)
= 1/2[(1/t0 + 1/βf(t0, d))(t0 + d/2)]−1/2

with t0 = T0/TA the optimum integration time for the
given delay. This observing efficiency η is always smaller
than 50%, since at least half of the time is “wasted” for
the integration of the Off-signal. Clearly, the longer the
dead time the less efficient the observation. Since the im-
pact of the dead time is determined by its relative length
when comparing with the Allan variance minimum time,
a larger TA helps as well. (A plot of Eq. (17) can be found
in Fig. 5.) It should be kept in mind that the efficiency
calculated here is the best possible for a given d. If other
integration times are chosen, the efficiency will definitely
become worse! One should also be aware of the fact that
the total observing time has to be increased by a factor
proportional to the square of the inverse efficiency to com-
pensate for the reduced efficiency, which might become a
high price to pay for a non-appropriate observing strategy.

4.2. Mapping

Another and possibly more interesting case is the situ-
ation when measuring maps either by Raster-Mapping

or On-The-Fly. In both cases there are N different On-
positions per Off-position in one cycle, the only difference
is that for Raster-Mapping there is some dead time be-
tween the different On-positions which does not appear
during OTF observations. It is found in literature that
the Off-integration time should be

√
N times longer than

the On-integration time (Ball 1976). This advice leaves
the question open how long the On-integration should
last. For the following treatment of this question we as-
sume that we have an On-integration time Ts, an Off-
integration time Tr, a dead time Tds between each of the
On-measurements, another dead time Tdr to move from
the last On- to the Off-position, and a different dead
time Tdc to move the telescope back to the first On-
position to begin with the next cycle again. It is plau-
sible that Tdc will not be identical with Tdr, since the
first and last On-position are not the same, and the time
to move between the positions (with different velocity re-
quirements in OTF-mode as well) is definitely different.

The delay between one of the On-positions and the
Off-position is also dependent on the number of Ons in
between. If we consider the worst case situation, we have
to investigate the On-Off pairs with maximum delay in-
volved, which is the first On-position when putting the
Off at the end of the cycle. The delay Td is then:

Td = (N − 1)(Ts + Tds) + Tdr or
d = (N − 1)(s+ ds) + dr. (18)

Here and for the following we use d = Td/TA, ds = Tds/TA,
dr = Tdr/TA, dc = Tdc/TA, s = Ts/TA and r = Tr/TA.

We also have to take into account now that the inte-
gration time for On is different than for Off. Hence we
write:

xs(Ts, t) = 1/Ts

∫ t

t−Ts

s(t′)dt′, (19)

xr(Tr, t) = 1/Tr

∫ t+Td+Tr

t+Td

s(t′)dt′.

Similar as before we find after some straight-forward
derivation using Eqs. (5), (6), (9), and (19):

σ2
1(s, r) = ΓTr(0) + ΓTs(0)− [w+ΓT+(Tm)− w−ΓT−(Tm)]

with T± = (Tr± Ts)/2, w± = 2T 2
±/[TrTs], and Tm = T+ +

Td. When integrating one finds now:

σ2
1(s, r)
〈s(t)〉2 =

1
BFlTA

(1/s+ 1/r + 2g(s, r, d)/β) (20)

and for the two limiting cases of β one gets:
g(s, r, d) = (s+ r)/2 + 3/2d, β = 1, and
g(s, r, d) = [(s+ r)/2 + d]2, β = 2.

The function g(s, r, d) is identical with f(t, d) for s =
r = t (see Eq. (15)). The variance found here is valid
for one pair of a particular On- and the corresponding
Off-measurement.

We have to identify now, how the noise is develop-
ing, if one wants to observe a full map within a given
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total observing time TObs. One observing cycle consists of
N identical On-integrations (Ts), one Off-integration (Tr),
and the various dead times in between. Thus we have for
the complete cycle time Tc:

Tc = NTs + Tr + (N − 1)Tds + Tdr + Tdc. (21)

We assume that we want to measure a map consisting of L
different On-positions. This needs L/N cycles for observ-
ing each position once. Each of the On-positions may be
measured K times within the total observing time TObs in
order to improve the noise level. Thus we have:

TObs = KTc × L/N, (22)

with K ≥ 1. The choice of K may be dependent on N,L
and the available total observing time TObs, and it has to
be chosen according to the individual needs of the observ-
ing program. In many cases K will be equal to 1. When
using Eqs. (20), (21), and (22), we get now finally:

σ2
K(s, r,N)
〈s(t)〉2 = 1/K

σ2
1(s, r,N)
〈s(t)〉2 (23)

= L
1

BFlTObs
(1/s+ 1/r + 2/βg(s, r, d))

×
(
s+ ds +

r + dr + dc − ds

N

)
·

We have found now the variance as a function of three vari-
ables s, r, and N with the relative delays ds, dr, and dc as
parameters. Note that the On-Off delay Tdr has different
impact on the statistics than the return delay Tdc, since
the latter does not affect the drift contribution g(s, r, d)
(see Eqs. (18), (20), (21), and (23)).

The minimum of σ2
K(s, r,N) can be found, where all

derivatives with respect to s, r, and N become zero. This
is the set of variables where the observing efficiency be-
comes the best possible under the given circumstances. (It
is simple to prove that there is exactly one minimum as
long as s, r and N are larger than zero.) Any other set
of variables will result in a degradation of the observing
efficiency. But, as was mentioned before, the use of the
relation r = s

√
N leads to results very close to this opti-

mum5. Therefore, for all practical purposes it is sufficient
to apply only a two-dimensional optimization for the two
variables s and N :

∂σ2
K(s, r,N)/∂s|r=s√N = 0 and (24)

∂σ2
K(s, r,N)/∂N |r=s√N = 0.

It is trivial to show that the optimum number of Ons be-
comes infinite in case of OTF measurements (ds = 0).

5 Using Eq. (23) it is easy to verify this relation when assum-
ing that there is no drift contribution involved. But, if there is
drift noise, it is also clear from Eq. (23) that the relation is no
longer valid. However, a comparison of the results of a calcula-
tion with and without the relation between On- and Off-time
shows that the minimum rms-values differ only by amounts
of the order of 0.1% or less. Therefore the introduction of the
simple relation between s and r remains justified.

Therefore it seems to be advisable to use fairly large N
in order to be as close as possible to the optimum case
of N → ∞. On the other hand, the optimum integration
time ts becomes extremely small in this case (see below),
which finds it’s limitation because of hardware constraints
for example. Surprisingly, for Raster-Mapping with ds 6= 0
there is always a finite N required for an optimized obser-
vation. This optimum N is dependent on ds, dr, and dc.

Usually, it is rather difficult to make observations with
an arbitrary number of Ons per Off at a given geometry of
a particular map. It is therefore much more interesting to
derive conclusive estimates for an optimized observation
under the assumption of a predefined and fixedN for both,
Raster-Mapping and OTF observations. In this case one
has to find the minimum with:

∂σ2
K(s, r,N)/∂s|N fixed,r=s

√
N = 0. (25)

In any case one has to investigate what impact the cho-
sen N has on the total efficiency using Eqs. (23) and (24)
in order to verify that the used N is not too far away from
optimum.

In order to provide some idea about the best choice of
the On-observing time s, the optimum integration time in
OTF mode is shown in Fig. 4 as a function of the On-Off
delay dr. The delay for the return to the begin of the cycle
is taken into account by a dc 20% longer than dr. The two
solid curves are derived from Eqs. (23) and (20) for the
two limiting cases β = 1 and β = 2. The hatched area in
the plot represents the region where the increase of the
rms stays below 1% as compared to the optimum for both
values of β. This means that for all assumed drift slopes
one is always safe when choosing an On-integration time
within this region. Such optimized integration time can be
described by the purely empirical formula:

s ≈ 0.53d0.23/N0.69, r = s
√
N (26)

with d = (N − 1)ds + dr + dc.
d is the sum of all delays in one cycle. The formula is also
valid for Raster-Mapping and Position-Switch measure-
ments, and it may be used for values of dr and dc between
0 and 1, for ds ≤ 0.1, and N ≥ 1.

Finally, also the overall observing efficiency can be
found for the measurement of extended maps. The the-
oretically best possible value of the variance is given by:

σ2
th(s, r,N)
〈s(t)〉2 = L

1
BFlTObs

,

where no dead time is present and virtually all observing
time is spent on the On-positions. In this case we have
now for the relative efficiency:

η = [σ2
th(s, r,N)/σ2

K(s, r,N)]1/2 (27)

=
[
(1/s+ 1/r + 2/βg(s, r, d))

×
(
s+ ds +

r + dr + dc − ds

N

)]−1/2

.

Figure 5 depicts the optimum efficiency accord-
ing to Eq. (27) and (25) for three different
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Fig. 4. Optimum On-integration time for OTF measurements
with 50 Ons per Off. The hatched area represents the regime
where the rms increase stays below 1% for any β between 1
and 2. The dotted curve in the middle represents the suggested
On-integration time using Eq. (26). As is clearly visible, the
optimum integration time is typically of the order of a few
seconds when assuming an Allan variance minimum time near
or above 100 s.

N (N = 1, 10, and 100). The curves for N = 1 (dotted
lines) are the Position-Switch efficiencies at the same
time (see Eq. (17)). Clearly the OTF efficiency is much
better than the Position-Switch efficiency. At zero delay
it reaches a maximum value of (1 + 1/

√
N)−1, and it

decreases monotonically with increasing dr. Again, the
efficiency shown in the plot is the maximum one can
achieve under the given circumstances. When comparing
η(N = 10) with η(N = 100), it is clear that N = 100 is
the preferable choice. This example demonstrates that it
is advisable to determine whether the number of desired
N is a reasonable choice or should be reconsidered when
planning the best strategy for the observation.

How the efficiency develops with N is visible in Fig. 6
for some fixed On-Off delays. Obviously, the gain in effi-
ciency with increasingN aboveN = 50 is rather marginal.
Therefore it is questionable whether a significant improve-
ment in observing efficiency is achievable when going from
N = 50 to N = 100 for example. Any reduction of the On-
Off delay time would be a much more effective measure.
On the other hand, the plot shows also, how valuable an
increase in N can be in case one is considering N = 10 or
less.

One of the remaining questions is, how long one cy-
cle Tc will last, once the optimum On- and Off-integration
time has been found. Using Eq. (21) it is now simple to
calculate Tc as a function of the On-Off delay time dr. In
Fig. 7 the cycle time is plotted for three cases with N =
1, 10, and 100. At first sight it appears surprising that
the time for a full cycle increases to values several times
longer than the Allan variance minimum time in case there
is substantial delay dr. But again, the length of one cycle
depends strongly on the number of Ons per Off. Since the
On-integration time is rather small at large N , the larger

Fig. 5. Relative optimum efficiencies of OTF measurements
for N = 1, 10, and 100 On-positions per Off (see Eq. (27)). For
each N both curves for β = 1 and = 2 are plotted. It is obvious
that larger N lead to higher efficiency. The dotted curves for
N = 1 represent the Position-Switch situation with an On-Off
delay every second time only. This is taken into account by
setting dc = ds = 0 in Eqs. (23) and (27) while N = 1.

Fig. 6. Relative OTF efficiency as a function of the number
of Ons per Off for various relative On-Off delays according to
Eqs. (27), (25), and (23). For each dr both curves for β = 1
and = 2 are plotted.

radiometric noise of the On-measurement dominates the
noise budget so that a longer delay with an increased con-
tribution of drift noise becomes acceptable. For a given
and fixed N the increase of the cycle time with increasing
delay is the consequence of the fact that at larger integra-
tion time the loss due to drift noise is less costly than the
loss due to the On-Off delay. This effect is also clearly visi-
ble in Fig. 2 for the case of Position-Switch measurements.

5. Conclusion

The discussion above provides some clear guidelines for
an optimized observing program. The first step has to
be a reliable measurement of the system Allan vari-
ance. The word “system” includes all components of the
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Fig. 7. Cycle time for OTF measurements as a function of
On-Off delay. The cycle time comprises N On-integrations,
one Off-integration, and the dead times in between. The three
cases (N = 1, 10, and 100) are calculated from Eqs. (21), (23),
and (25). Similar to Fig. 5, the Position-Switch situation is also
indicated by the dotted lines. Note that the increase of cycle
time is partly due to the time spent during slew from On to
Off and back.

observatory which may possibly contribute to the noise in-
cluding the atmospheric fluctuations for example. When
knowing the applicable dead times, a simple calculation of
the optimum integration time can be made by using the
“rule of the thumb” as given by Eq. (26). As was pointed
out before, Position-Switch or Chop measurements should
be done in a most economical way by moving the telescope
or the chopper only every second time. OTF or Raster-
Mapping measurements need a clear understanding of the
impact of the number of On-positions chosen for each Off-
integration. Also here it might be of some value to reverse
the sequence of the integrations on the various positions
every second time in order to reduce some of the loss in
time due to the slew of the telescope between the On- and
the Off-positions. It should be noted that the measure-
ment of large maps can be handled in different ways. If
one wants to achieve a certain signal to noise, it might be
advisable to use larger N with smaller Ts and to repeat
the map several times, as it is considered by the param-
eter K in Eq. (22). In any case, the suggested On- and
Off-integration time should not be drastically altered, al-
though the plot in Fig. 4 indicates that there is quite some
margin available.

In general it is surprising how closely together the
curves for the different β in Figs. 5–7 are found, which
is a clear validation for the assumption that it is sufficient
to consider only the extreme cases for the drift contribu-
tions. Therefore, there is no need to go too deeply into the
analysis of the drift part in the noise. It is also one of the
better news from the treatment here that some freedom
to plan the observation is still preserved. This might be
particularly important when considering the constraints
set by the observatory hardware. It is probably not advis-
able to operate with too short integration intervals, since

the data flood might become overwhelming, and the stor-
age capacity of the computers could easily be exceeded.
Therefore, the conclusion found before that there are no
real requirements for high speed observing most of the
time is very important.

The discussion above is most useful for observations
with space-born observatories like SWAS (Melnick et al.
2000), ODIN (Hjalmarson 1993) or FIRST (de Graauw
et al. 1998)6. Since usually a satellite cannot be oriented
in space very rapidly, the impact of dead time becomes
vital. The SWAS satellite is not capable to control the
pointing very accurately during slew across an extended
source, so that the OTF mode is not applicable. Instead,
Raster-Mapping is a generally used procedure. On the
other hand, since SWAS is a very small satellite, it can be
pointed from one position to a second in 3 degrees distance
within less than 15 s. A 3-degree nod is often required
during observations in the Milky Way, since the emission
of molecules like CO is fairly extended. Nevertheless, the
loss in observing efficiency looks acceptable, when con-
sidering an Allan variance minimum time of the SWAS
receiver/backend system of about 150 s as found in or-
bit. On the Herschel space observatory, the situation will
be changed drastically. We can assume that the pointing
of the telescope during slew is well defined so that OTF
measurements should be applicable. But, due to the fact
that Herschel is going to be a very heavy satellite, the
movement by three degrees will last nearly as long as the
expected Allan variance minimum time will amount to.
In consequence, the value of the dead times dr and dc

will be close to unity when assuming a similar system sta-
bility like that of SWAS. This prohibits Position-Switch
measurements with the instrument, because the efficiency
would drop to values below 30%, which would certainly be
rather disappointing because of the consequences for the
extremely precious and limited observing time. Therefore,
a very careful analysis for determining the best possible
observing strategy is extremely important for such a pro-
gram.

Rather different circumstances exist at ground-based
observatories. Typical dead time for a slew of 3 degrees is
of the order of a few seconds only, therefore the impact of
dead time does not appear as devastating as with space-
based observatories. A detailed planning of an observing
strategy does not seem to be so easily implemented, par-
ticularly, if other parameters like varying hardware con-
straints or human limitations are playing a significant role
as well. Typically, the Allan variance minimum time of
most ground-based sub-millimeter observatories is rather
small, partly due to the impact of an unstable atmosphere.
Therefore, the advantage of a smaller dead time is partly
eaten away by the reduced stability. But still, as should be
clear from the discussion before, the actual situation has
to be analyzed in detail for every individual case in order
to achieve as much scientific return from the observations

6 FIRST was recently renamed to “Herschel Space
Observatory”.
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as possible. For this the usage of the analysis presented in
this paper could be very essential.

Appendix A: The development of noise when
co-adding frequency pixels

Co-adding a couple of pixels in a measured spectrum in or-
der to improve the signal to noise ratio is general practice
when dealing with noisy spectra, but, the consequences of
this procedure are not quite as trivial as one would like to
believe. For the discussion we start again with the defini-
tion of the normalized first order correlation function as
defined in Eq. (4):

gm = 〈dyndyn+m〉/[〈dy2
n〉〈dy2

n+m〉]1/2

with dyn = yn − 〈y〉.
The data yn are here the pixel components of a fully

calibrated spectrum as measured with a multi-channel
spectrometer. The index “m” describes, by how many pix-
els the spectrum is shifted before the multiplication of the
pixel data is done7. The correlation function is symmetric,
since g−m = gm. We assume that all yn behave identically
in a purely statistical sense. Then, the values of gm de-
pend only on the “distance” between the data given by
the parameter “m”, and the expectation values as defined
by the brackets become independent on n. We have to de-
termine now the expected statistics of the new co-added
data set zn with:

zn = 1/K
K∑
k=1

yn+k

with K the number of co-added pixels. With the usual
definition of the variance, σ2

K = 〈z2
n〉 − 〈zn〉2, we can now

determine how the error of the new data develops:

σ2
K = 〈[1/K

∑
yn+k]2〉 − 〈1/K

∑
yn+k〉2

= 〈[1/K
∑

dyn+k]2〉

= 1/K2
K∑
p=1

K∑
q=1

〈dyn+pdyn+q〉

= σ2
1/K

2
K∑
p=1

K∑
q=1

gp−q = σ2
1/K

[
1 + 2

K−1∑
m=1

(1−m/K)gm

]
7 In case of a finite data set with N data we can convert the

definition into a more practical definition using:

gm =
1

N−m−1

∑N−m
n=1

δynδyn+m(
1

N−m−1

∑N−m
n=1

δy2
n

1
N−m−1

∑N−m
n=1

δy2
n+m

)0.5

with δyn = yn − 1/(N −m)
∑N−m

k=1
yk and δyn+m = yn+m −

1/(N−m)
∑N−m

k=1
yk+m. The expectation values are estimated

here by the means over a sufficiently large number of data
(= N −m). Important is to note that the value of this auto-
correlation function is “1” for m = 0 by definition.

σ2
1 is the variance of the statistical distribution of the ini-

tial data yn. From this and the radiometer equation we
get now finally:

σ2
K = 〈z〉2/[BKT ] = σ2

1/KBox = 〈y〉2/[KBoxB1T ]

with KBox = K/(1+2(1−1/K)g1+2(1−2/K)g2+...). The
new fluctuation bandwidth BK is therefore KBox times
larger than the fluctuation bandwidth B1 of a single spec-
trometer pixel. But, the effective number of pixels KBox

is significantly smaller than the number of co-added pix-
els since the values of the auto-correlation function are all
positive under normal circumstances. Note that the ratio
of K and KBox is a function of K itself so that one has to
analyze the situation for the individual case accordingly.

Only the first few values of gm (m not larger than
about 3) should be non-zero for a decent spectrometer,
since the overlap of the power response functions between
neighbored pixels should be small. Therefore, in the lim-
iting case of very large width of the bins (K large), we get
now:

KBox ≈ K/(1 + 2g1 + 2g2 + 2g3).

Typical values for KBox at large K – for instance at
Nyquist sampling of the spectrum – are somewhere
near K/2 depending on the actual spacing and shape of
the spectrometer channels, but they may vary for different
spectrometer types.
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