BLISS: a Far-IR Spectrograph for SPICA

Matt Bradford (JPL, Caltech) w/ help from many

Team
- Science: Matt Bradford (PI, JPL), James Bock (JPL, instrument scientist)
- BASS: Tim Koch (BASS project manager), Al Nash (BASS project manager), Warren Holmes (JPL, test-shale engineering), Takao Nakagawa (ISAS / JAXA), George Rieke (Arizona), John-David Lester (U. Texas), Matt Malkan (UCLA), Hideo Matsuhara (ISAS / JAXA), George Helou (IPAC), Dan Lee Armus (IPAC SSC), Scott Chapman (Cambridge), Uma Gorti (UC Berkeley / NASA ARC), Martin Harwit (Cornell), Gordon Stacey (Cornell), Mike Werner (JPL)
- Technology: Peter Day (JPL, detector physics & testing), Warren Holmes (JPL, test-shale engineering), Takao Nakagawa (ISAS / JAXA), George Rieke (Arizona), John-David Lester (U. Texas), Matt Malkan (UCLA), Hideo Matsuhara (ISAS / JAXA), George Helou (IPAC), Dan Lee Armus (IPAC SSC), Scott Chapman (Cambridge), Uma Gorti (UC Berkeley / NASA ARC), Martin Harwit (Cornell), Gordon Stacey (Cornell), Mike Werner (JPL)

Scientific Motivation: Why Focus on Broadband Spectroscopy?

Cosmic Backgrounds:
- The remnant glow of star and galaxy evolution
- Half is in the far-IR

The Galaxies producing the CIB:
- Discovered with Spitzer MIPS, SCUBA, & AKARI
- Appear to be LIRGS and ULIRGS at z~0.5 to 3

Future platforms will produce even larger source catalogs from imaging surveys

Spectroscopic Follow-up is Required for Detailed Astrophysics

A wealth of information is available for early-universe galaxies if we have the sensitivity:
- Suite of lines provides a reliable redshift template, perhaps the only method for very dusty sources.
- Fine structure and molecular lines dominate the gas cooling and measure its properties
- Degree of ISM processing
- Starburst / AGN contributions
- Degree of SED processing

Far-IR lines are subject to very little extinction, they probe the bulk of a galaxy.

SPICA Spectrograph Sensitivities

- Far-IR – mm Spectroscopy Platforms
 - SPIRA
 - SAFARI
 - CAT
 - JWST
 - BLISS

Spectrograph Concepts and Technologies

The ideal instrument for rapid follow-up of distant (unresolved) galaxies is a broadband grating, operating at or near the background limit.

BLISS Concept
- Complete coverage from 38-430 microns
 - 2 beams on the sky, 5 bands in each covering the full range
 - Waveguide spectrometers and cross-dispersed echelles
 - Both compatible with long-leg bolometers

Z-Spec
- 1mm prototype, working on Mauna Kea w/ BG-limited performance
 - Bradford, Earle, Apetre, Glenn, Bock, Zmuidzinas, Nagler, Matsuhara, Inami

BLISS Detectors
- Requires ~few 10^-8 W Hz^-1/2 for photon BG limit.
 - Use leg-isolated TES
 - M. Kenny, P. Day, JPL

- T_c, G fabricating as designed
- High-aspect-ratio legs: Measured G value of ~10 mV / K at 60 mK using Johnson noise thermometry
- Moly-gold bi-layer TES, works for ~30 - 100 mK
- NEP measured with 220 mK TES

Noise measurements underway
- ~4e-19 W Hz^-1/2 NEP measured with 220 mK TES
- Confirms G-dependence, extrapolates to ~6e-20 W Hz^-1/2 for 70 mK
- Time constants OK for BLISS (sub 100 ms w/ feedback)