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Multiple-telescope interferometry for high-angular-resolution astronomical imaging in the optical–IR–far-IR
bands is currently a topic of great scientific interest. The fundamentals that govern the sensitivity of direct-
detection instruments and interferometers are reviewed, and the rigorous sensitivity limits imposed by the
Cramér–Rao theorem are discussed. Numerical calculations of the Cramér–Rao limit are carried out for a
simple example, and the results are used to support the argument that interferometers that have more com-
pact instantaneous beam patterns are more sensitive, since they extract more spatial information from each
detected photon. This argument favors arrays with a larger number of telescopes, and it favors all-on-one
beam-combining methods as compared with pairwise combination. © 2003 Optical Society of America

OCIS codes: 030.4280, 030.5260, 030.5290, 110.4280, 120.6200, 270.5290, 350.1270.
1. INTRODUCTION
Astronomical spatial interferometry, which is the tech-
nique of combining the radiation gathered by several
separated telescopes, is of great current interest because
of the scientific potential of very-high-angular-resolution
observations, combined with numerous technological ad-
vances that now make interferometry feasible at
optical–IR wavelengths. As a result, this field is very ac-
tive, and serious investments are being made: Numer-
ous ground-based facilities are in development, large ar-
rays are being discussed, and ambitious space missions
are being considered. Detailed reviews of this field,
which describe the scientific motivation and results, tech-
nical challenges and approaches, and existing and
planned facilities and which contain extensive bibliogra-
phies, have been made recently.1,2 Additional informa-
tion is readily available.3

Of course, interferometry is very well developed at ra-
dio wavelengths, at which large arrays of telescopes, such
as the National Radio Astronomy Observatory Very Large
Array (NRAO VLA),4 routinely provide high-angular-
resolution synthetic aperture imaging. Ground-based in-
terferometry at optical wavelengths is inherently more
difficult owing to the limitations imposed by atmospheric
phase fluctuations; dealing with these fluctuations is per-
haps the key issue for ground-based systems and provides
strong motivation to consider interferometry in space.
As a result, NASA is pursuing the Space Interferometry
Mission,5 an optical astrometric interferometer with a
10-m baseline, scheduled for launch at the end of the de-
cade. The Space Interferometry Mission will perform a
wide range of science, including searches for extrasolar
planets as well as synthetic aperture imaging of the cen-
ters of galaxies. Another important advantage of space
interferometry is the unobstructed transmission and low
background over the entire IR–far-IR–submillimeter
spectrum. Looking further into the future, IR interfer-
1084-7529/2003/020218-16$15.00 ©
ometers are being considered for missions such as the Ter-
restrial Planet Finder6 and Darwin,7 which have the am-
bitious goal of detecting and characterizing Earth-like
planets around nearby stars. Direct-detection space in-
terferometers at very long (far-IR–submillimeter) wave-
lengths that use cold telescopes have also been proposed,
such as the NASA Submillimeter Probe of the Evolution
of Cosmic Structure and Space Infrared Interferometric
Telescope (SPECS/SPIRIT) concepts.8–10 Such interfer-
ometers would give the angular resolution needed to
break through the spatial confusion limit,11 which be-
comes severe at these long wavelengths, and would allow
a detailed study of the properties of the newly discovered
class of submillimeter-luminous, dusty galaxies at high
redshifts.12–14

In spite of this high level of activity, it appears that im-
portant design considerations for optical interferometers
are not yet resolved. One major issue is the number of
telescopes that should be used; another issue is the
method of beam combination. Of course, various practi-
cal constraints may limit the range of design options; for
instance, it is likely to be important to minimize the
number of telescopes for a space interferometer. Al-
though a number of papers have addressed these various
issues,15–24 there appears to be no general consensus on
which design approaches give the best sensitivity or even
if there is much difference between them.1 It is essential
to have a full understanding of the fundamental issues
that determine the sensitivity of optical interferometers;
advancing that understanding is the goal of this paper.
We will therefore ignore important technical issues, such
as the methods used to deal with atmospheric fluctua-
tions, mechanical and thermal perturbations, detector
noise, etc., and discuss only interferometers with nearly
ideal characteristics.

Our approach will focus on the instantaneous (not syn-
thesized) angular response function or beam pattern as-
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sociated with a given detector that receives the light gath-
ered by the interferometer. We will argue on general
grounds, supported by the Cramér–Rao lower bound on
the uncertainty of statistical inference, that it is impor-
tant to make the instantaneous angular response func-
tion as compact as possible in order to extract the maxi-
mum amount of spatial information from each detected
photon. This argument favors certain interferometer de-
signs over others. For instance, pairwise beam combina-
tion in which the light from T telescopes is split and in-
terfered on T(T 2 1)/2 detectors (one detector per
baseline), which is essentially the approach adopted for
radio interferometry, is, in general, less sensitive for
direct-detection interferometric imaging than schemes in
which the light from all T telescopes is coherently com-
bined onto the detectors. The reason for this is that the
angular response functions are less compact for the case
of baseline pair combination, and each photon detected
provides less information about the spatial structure of
the source. This distinction vanishes for the radio case,
in which one is dealing with amplified signals that have
high occupation numbers for the photon modes, and so
photon bunching plays an important role. The connec-
tions and distinctions between the optical and the radio
cases will be discussed in more detail in a future paper.25

The structure of the paper is as follows. Sections 2–5
are devoted to giving a rigorous definition of the photon-
detection probability matrix of an arbitrary astronomical
instrument, such as an interferometer, in terms of electro-
magnetic scattering matrices. The formalism described
in these sections is quite powerful and allows us to handle
any interferometer configuration or beam-combining
method. Many of the key results described in these sec-
tions are well known and will likely be familiar. How-
ever, the use of scattering matrices and photon-detection
probability matrices to describe astronomical instruments
and interferometers is not common and is therefore cov-
ered in some depth.

The key mathematical results are described in Section
6. There we discuss the Cramér–Rao sensitivity bound,
as well as two techniques (maximum likelihood and least
squares) that can be used to obtain the source intensity
distribution from the observed photon counts; the overall
goal is to argue that the Cramér–Rao lower bound actu-
ally gives a good estimate of the instrument performance.
We also show that the only instruments that can achieve
ideal sensitivity are those that do not mix up photons
from different spatial or spectral channels. Unfortu-
nately, such instruments are difficult to build; interferom-
eters do, in fact, mix up photons spatially (and spectrally,
in some cases).

To demonstrate the consequences of a nonideal re-
sponse, in Section 7 we present the results of a numerical
calculation of the Cramér–Rao bound for the simple but
illustrative case of one-dimensional interferometer ar-
rays. To do this, we draw on the material presented in
Sections 2–6. Here we demonstrate that arrays with a
larger number of telescopes are superior and that N-way
beam combining is superior to two-way combining. The
paper closes with comments on these results and indi-
cates areas for future research.
2. SCATTERING MATRIX DESCRIPTION OF
OPTICAL SYSTEMS
The response of any electromagnetic system, such as a
collection of optical elements (mirrors, lenses, etc., but not
detectors), may be described by a classical scattering ma-
trix S. Scattering matrices are common in electrical
engineering,26,27 in which they are used to describe linear
N-port circuits:

bi 5 (
j

Sijaj . (1)

The indices 1 < i, j < N label the ports. A set of N
transmission lines attached to the ports carries incoming
waves with amplitudes ai and outgoing waves with am-
plitudes bi . The standard practice is to normalize these
amplitudes to give simple expressions for the power car-
ried by the waves; for instance, the total incident power is
Q inc 5 ( iuaiu2. With this choice of normalization, it is
straightforward to show that a lossless circuit has a uni-
tary scattering matrix, SS† 5 I (here I is the identity ma-
trix). Reciprocity, which has its roots in time-reversal
symmetry and applies to most passive circuits, implies
that ST 5 S. When the wave amplitudes are expressed
in terms of voltages and currents at the ports, the scatter-
ing matrix S may be related to more familiar quantities
such as the impedance matrix Z. Finally, we note that
(classical) noise can be treated very naturally within the
framework of scattering matrix theory.26,28–30 The exten-
sion to include quantum effects, such as photon-counting
statistics, is straightforward.25

We can apply the scattering matrix concept to charac-
terize an optical system, such as the collection of tele-
scopes and beam-combining optics that make up an inter-
ferometer. This approach was developed for antenna
problems during the World War II radar effort31 and is
particularly convenient at radio wavelengths, since it al-
lows circuit and antenna concepts to be treated in a uni-
fied fashion. Although scattering matrices are fre-
quently applied to antenna problems,32,33 they are not
often used to describe optical systems (though they do
find occasional use34). Scattering matrices are very use-
ful for describing guided-mode optics, which are, in fact,
of substantial interest for astronomical interferome-
try.35,36 Scattering matrices are also very well suited for
problems involving the quantum-mechanical nature of
the radiation field, such as photon-counting statistics, be-
cause one directly deals with the modes of the radiation
field. For these reasons, we adopt the scattering matrix
approach. To make the paper reasonably self-contained,
and to establish our notation, we will review this ap-
proach in detail.

We begin by describing the radiation field in terms of
incoming and outgoing plane waves. For simplicity, we
will continue to use a classical description for the electro-
magnetic field; it is straightforward to adapt our formal-
ism to the case of a quantum electromagnetic field.25 As-
suming a time-harmonic exp(1jvt) time dependence, the
electric field of the incoming wave arriving at the tele-
scope system (or antenna) can be expressed as
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Einc~r! 5
A2h0

l
E dVa~V!exp@1jkn̂~V! • r#. (2)

Here a(V) represents the amplitude and polarization dis-
tribution of the incoming plane waves, l is the free-space
wavelength, and h0 5 377V is the free-space impedance.
As usual, V represents the polar angles (u, f) with respect
to the chosen coordinate system; the unit vector n̂(V)
5 ẑ cos u 1 sin u (x̂ cos f 1 ŷ sin f ) describes the direc-
tion from which a plane-wave component is arriving.
Similarly, the outgoing wave can be expressed as

Eout~r! 5
A2h0

l
E dVb~V!exp@2jkn̂~V! • r#. (3)

The normalization is again chosen to give simple expres-
sions for power, for instance,

Q inc 5 E dVua~V!u2. (4)

In the usual case of incoherent light emitted by astro-
nomical sources, the wave amplitudes can be considered
to be random quantities with certain statistical proper-
ties.

An antenna is usually thought of as having one or more
well-defined ports, or terminals, that one can attach to
other circuits, such as an amplifier. In the case of a radio
telescope, the terminal may well be the output waveguide
of a feedhorn. The situation is a little more subtle for the
case of an optical telescope system, in which the light is
focused directly on the bare pixels of a detector array,
such as a CCD. [In reality, the distinction between opti-
cal and radio techniques is blurring. For instance, the
introduction of single-mode optical fibers for collecting
and transporting light from the focus of a telescope is
completely analogous to the use of radio feedhorns and
waveguides, and bare pixel detector arrays find use even
at very long (submillimeter) wavelengths.] We can imag-
ine describing the radiation incident on a given detector
pixel, which we label a, in terms of a modal expansion.
At the detector surface, these spatial modes may be con-
strained to have a nonzero amplitude only over the region
occupied by the pixel (for pixel sizes exceeding ;l, this
constraint makes the modes for different pixels orthogo-
nal, which simplifies the form of the scattering matrix).
The ith such mode for pixel a has incoming wave ampli-
tudes aia and outgoing wave amplitudes bia , which we
assume have the usual power normalization. We will de-
fine the terms ‘‘incoming’’ and ‘‘outgoing’’ in reference to
the telescope system rather than the detector pixels, so
that the light gathered by the telescope system that ar-
rives at the detectors is characterized by the amplitude
bia . Assuming perfect absorption by the detector, the
power absorbed can be expressed as

Qa 5 (
i

ubiau2. (5)

Imperfect absorption by the detector (quantum efficiency
below unity), as well as varying sensitivities to the differ-
ent spatial modes, can be incorporated into the definition
of the scattering matrix of the optical system, which we
discuss below. In the case of a system designed for
diffraction-limited imaging, most of the light absorbed by
the detector will be contained in a single mode (or two
modes, for polarization-insensitive detectors).

The telescopes and associated optical system (e.g.,
beam-combining optics) can be characterized by a gener-
alized scattering operator S. This operator acts on a Hil-
bert space consisting of vectors of the form

a 5 Fa~V!

aia
G , (6)

where a(V) is square integrable. The operator S can be
partitioned into four blocks:

S 5 F S~scat! S~rec!

S~trans! S ~refl!G . (7)

The first block, S(scat)(V, V8), describes the scattering of
an incoming plane wave arriving from V8 to an outgoing
plane wave traveling toward V. The script font reminds
us that this is a 3 3 3 matrix to account for polarization.
The second and third blocks are off diagonal: Sia

(rec)(V8)
describes the (vector) receiving antenna pattern for the
detector pixel mode ia, and Sjb

(trans)(V) describes the
transmitting antenna pattern. The fourth block is an or-
dinary matrix, Siajb

(refl) , that represents the scattering (re-
flection) of the optical system between the various detec-
tor pixel modes. The meaning of these quantities
becomes clear when we write expressions for the outgoing
waves in terms of the incoming waves:

b~V! 5 E dV8S~scat!~V, V8!a~V8! 1 (
jb

Sjb
~trans!~V!ajb ,

(8)

bia 5 E dV8Sia
~rec!~V8! • a~V8! 1 (

jb
Siajb

~refl!ajb .

(9)

Assuming that the optical system contains only recip-
rocal elements (e.g., no Faraday rotation isolators), we
know that the scattering operator must equal its trans-
pose. This implies that the transmitting and receiving
patterns are the same:

Sia
~trans!~V! 5 Sia

~rec!~V!, (10)

which is the well-known reciprocity theorem for anten-
nas. In addition, the radiation scattering operator obeys

S ~scat!~V, V8! 5 @S ~scat!#T~V8, V!, (11)

and the pixel-to-pixel scattering matrix is reciprocal,
S (refl) 5 @S (refl)#T.

The output power emanating from a passive optical
system cannot exceed the input power, which imposes an
important constraint on the scattering operator: I
2 S†S must be nonnegative definite. Combined with
the reciprocity theorem, this can be used to demonstrate
that the following matrix must also be nonnegative defi-
nite:
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Mia, jb 5 d ia, jb 2 E dV@Sia
~rec!~V!#* • Sjb

~rec!~V!

2 (
kg

@Skg,id
~refl! #* Skg, jb

~refl! . (12)

In particular, the diagonal elements must be nonnegative,
which implies

E dVuSia
~rec!~V!u2 < 1 2 (

jb
uSjbia

~refl!u2 < 1. (13)

Thus the overall normalization of the receiving patterns
is not arbitrary. If we demand that the optical system be
lossless and if the detector modes are perfectly coupled
@S (refl) 5 0#, the receiving patterns must be orthonormal:

E dV@Sia
~rec!~V!#* • Sjb

~rec!~V! 5 d ia, jb . (14)

We now calculate the power received by any detector
pixel. We assume that any imperfect absorption (includ-
ing reflection) associated with the detector pixel has been
incorporated into the definition of S. Furthermore, we
assume that the detectors do not radiate into the optical
system, so that aia 5 0. (The detectors are usually oper-
ated at a temperature low enough that the thermal radia-
tion they emit is negligible.) The power absorbed by
pixel a is

Qa 5 (
i

ubiau2 5 (
i

U E dVSia
~rec!~V! • a~V!U2

. (15)

3. ASTRONOMICAL SOURCES
Astronomical sources emit radiation that is spatially and
temporally incoherent. This means that we should re-
gard the amplitude a(V, n) at frequency n as a complex
random variable with mean zero and with a correlation
function of the form

^aq~V, n!aq8
* ~V8, n8!& 5 Aqq8~V, n!d ~V 2 V8!

3 d ~n 2 n8!. (16)

Here aq(V, n) 5 êq* (V) • a(V, n) and q, q8 P $1, 2% are
vector (polarization) indices, corresponding to two ortho-
normal polarization vectors êq(V), each orthogonal to the
propagation direction n̂(V). We note that the plane-
wave expansion of the incoming field is unique in the
sense that the correlation function is diagonal in the spa-
tial variable. Had we chosen some other modal represen-
tation, e.g., a vector spherical harmonic expansion, the
amplitude correlation matrix, in general, would not be di-
agonal in the mode indices.

The physical interpretation of Aqq8(V, n) follows from
a calculation of the flux F(p̂, ŝ, n), the power per unit
bandwidth per unit area, in a given polarization p̂ that is
incident on a surface with normal ŝ:
F~p̂, ŝ, n! 5
1

l2 (
qq8

E dVn̂~V! • ŝ

3 F p̂* • êq~V!Aqq8~V, n!êq8
* ~V! • p̂

u1 2 n̂~V! • p̂u2 G .

(17)

For sources occupying a small solid angle near zenith ( ŝ
5 ẑ), the total flux for both polarizations simplifies to

Ftotal~n! 5
1

l2 (
q
E dVAqq~V, n!. (18)

Thus Aqq(V, n)l22 is the specific intensity (flux per unit
solid angle) arriving from the direction V in polarization
êq(V). For unpolarized emission, we can write

Aqq8~V, n! 5 hn n~V, n!dqq8 , (19)

where n(V, n) is the mean photon occupation number.
This simplifies to Aqq 5 kBT for a blackbody in the
Rayleigh–Jeans limit.

4. RESPONSE OF AN OPTICAL SYSTEM TO
AN ASTRONOMICAL SOURCE
The average power per unit bandwidth received from an
astronomical source by a detector pixel can be calculated
with Eqs. (15) and (16):

^Qa~n!& 5 (
qq8

E dVAqq8~V, n!H(
i

@ êq • Sia
~rec!~V, n!#

3 @Sia
~rec!~V, n! • êq8#* J . (20)

For an unpolarized source, Aqq8(V, n) 5 A(V, n) dqq8 ,
this reduces to

^Qa~n!& 5 E dVA~V, n!Ra~V, n!, (21)

where we have defined the angular response function cor-
responding to this detector:

Ra~V, n! 5 (
i

uSia
~rec!~V, n!u2. (22)

For a source that has uniform brightness over the area
sampled by the response function Ra(V, n), the power re-
ceived is ^Qa(n)& 5 ma(n) A(V, n), where the effective
number of modes ma (spatial and polarization) coupled to
the detector is defined as

ma~n! 5 E dVRa~V, n!. (23)

According to inequality (13), ma(n) < ( i1, and so ma(n)
cannot exceed the number of modes received by the detec-
tor that are illuminated by the telescope.

For the opposite extreme, we take the case of a point
source located at Vp. The power received by one detector
is

^Qa~n!& 5
1
2 F~n!l2Ra~Vp, n!, (24)
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where F(n) is the flux (both polarizations) of the point
source. On the other hand, for a telescope system with
total collecting area Atel , the power collected by all the
detectors cannot exceed F(n) Atel . Thus

(
a

Ra~Vp, n! <
2Atel

l2 . (25)

Since the response functions are all positive, each indi-
vidual response function must also obey this inequality.
Therefore if the response function Ra(V, n) has a flat-top
shape extending over a solid angle DVa , the effective
number of modes obeys

ma <
2AtelDVa

l2 . (26)

This statement is often called the antenna theorem; one
cannot increase the number of modes coupled to a given
detector without simultaneously broadening the angular
response function.

Inequality (25) suggests that we renormalize our re-
sponse functions:

ra~V, n! 5
l2

2Atel
Ra~V, n!, (27)

so that they obey

(
a

ra~V, n! < 1. (28)

The power received by a detector [Eq. (21)] can now be ex-
pressed as

^Qa~n!& 5
2Atel

l2 E dVA~V, n!ra~V, n!. (29)

We can discretize this integral by splitting the source into
small patches or ‘‘pixels’’ centered at positions Vs , allow-
ing each patch to have a different size DVs and assuming
that the source has uniform intensity across each patch:

A~V, n! 5 (
s

Ā~Vs , n!Us~V!, (30)

where the indicator function Us(V) has a value of unity
over the patch DVs and is zero otherwise [some sort of re-
striction on the form of A(V, n) is necessary, since a dis-
crete set of data cannot uniquely determine a function of
a continuous variable]. This gives

^Qa~n!& 5 (
s

2DVs Atel

l2 Ā~Vs , n!r̄a~Vs , n!, (31)

where the average of the response function over patch s is

r̄a~Vs , n! 5
1

DVs
E

DVs

dVra~V, n!. (32)

Finally, using this result along with A(V, n)
5 hn n(V, n) [Eq. (19)], we arrive at a very simple and
illuminating expression for the average number of pho-
tons detected in a unit bandwidth during an integration
time t:
^Na& 5 E dn(
s

^N~Vs , n!&r̄a~Vs , n!, (33)

where

^N~Vs , n!& 5 t
2DVsAtel

l2 n̄~Vs , n! (34)

is just the maximum average number of photons (per unit
bandwidth) that a single-aperture telescope with area Atel
could detect in a time t from the solid-angle patch DVs .
The interpretation of the normalized response function is
simple: ra(V, n) is the probability that a photon of fre-
quency n that was emitted from position V and was col-
lected by the instrument is actually detected by detector
a. The total probability for detection is at most unity, ac-
cording to inequality (28).

If we wish, we can take the additional step of discretiz-
ing the frequency integral into spectral channels Dn f ,
which leads to

^Na& 5 (
s,f

^N~Vs , n f!&r̄a~Vs , n f!, (35)

where the maximum average number of detectable pho-
tons in frequency channel Dn f is

^N~Vs , n f!& 5 tDn f

2DVsAtel

l2 n̄~Vs , n f! (36)

and the response function is now also averaged over fre-
quency:

r̄a~Vs , n f! 5
1

DVsDn f
E

Dnf

dnE
DVs

dVra~V, n!. (37)

Equations (35) and (36) tell us that the response of any
photon direct-detection instrument, regardless of spectral
or spatial resolution, whether single telescope or interfer-
ometer, etc., can be reduced to a probability matrix pac .
Here, for simplicity, the combined spatial–spectral chan-
nel index c replaces both indices s and f:

pac 5 r̄a~Vs , n f!. (38)

This matrix describes the probability of a photon, which
was emitted by the source in some spatial–spectral chan-
nel c and is collected by the instrument, to be absorbed in
a given detector a. Let

lc 5 ^N~Vs , n f!& (39)

represent the mean number of incident photons from
channel c arriving at the instrument. The mean number
ma of photons detected by detector a is given by

ma 5 ^Na& 5 (
c

paclc . (40)

A few comments can be made about the properties of
the probability matrix P.

1. From inequality (28) we have

(
a

pac < 1, (41)
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so that the mean number of photons detected cannot ex-
ceed the mean number of incident photons, (ama

< (clc .
2. Since all elements are nonnegative, we also must

have
0 < pac < 1. (42)

3. The dimensions of the matrix are Ndetec 3 Nchan .
Thus the rank of the probability matrix, r(P), obeys
r(P) < Nchan . Here Ndetec is the number of detectors and
Nchan is the number of spatial–spectral channels.

4. If we wish to determine uniquely the source inten-
sity distribution lc in Nchan spatial–spectral channels, we
should require P to have full rank: r(P) 5 Nchan . In
particular, this condition implies Ndetec > Nchan .

These properties and their implications will be discussed
in more detail in Section 6.

5. RESPONSE OF SINGLE-MODE
INTERFEROMETERS
Section 4 gives us the tools to rigorously calculate the
photon-detection probability matrix for an interferometer.
The primary reason for constructing interferometers is to
obtain high spatial resolution; the overall field of view is
often a secondary concern. Thus it is interesting to ex-
amine the case of an interferometer in which each tele-
scope collects light from a single diffraction-limited beam,
which sets the field of view. For simplicity, we will as-
sume that the interferometer consists of T identical tele-
scopes, each with area A1 . The total collecting area is
AT 5 TA1 . The receiving pattern corresponding to the
single diffraction-limited beam of telescope t (where t
5 1 ... T) will be denoted by St

(rec)(V, n), following our
established notation. These receiving patterns are as-
sumed to be identical, apart from the fact that the tele-
scopes are located at different positions. We denote the
telescope positions with respect to an arbitrary (but com-
mon) origin using the displacement vectors rt . The re-
ceiving patterns can then be written as

St
~rec!~V, n! 5 exp@1ikn̂~V! • rt#S~rec!~V, n!. (43)

Here the pattern S(rec)(V, n) denotes the receiving pat-
tern of a telescope located at the origin. Each of these
telescopes produces a single-mode output beam, described
by an outgoing wave amplitude bt :

bt~n! 5 E dVSt
~rec!~V, n! • a~V, n!. (44)

The receiving patterns from different telescopes t Þ t8
are orthogonal to a high degree,

E dV@St
~rec!~V, n!#* • St8

~rec!
~V, n!

5 E dVuS~rec!~V, n!u2 exp@2ikn̂~V! • ~rt 2 rt8!#

' 0, (45)

because of the oscillations of the exponential factor. This
means that the telescopes are not coupled significantly
(as can happen for closely packed antenna arrays), and it
is therefore possible to achieve nearly perfect coupling to
the single-mode outputs. For this case, the telescope pat-
terns are orthonormal [see Eq. (14)]. If necessary, cou-
pling losses can be accounted for in the beam combiner,
which we introduce next.

The purpose of the beam combiner is to interfere the
light from different telescopes before it is detected.
There are various ways to do this: The telescopes can be
combined in pairs, analogous to the way that radio-
correlation interferometers operate, or all the light from
the telescopes can be interfered simultaneously, as is done
in Fizeau interferometry. Beam combination is a key is-
sue for interferometer design. We can describe any type
of beam-combining scheme using a scattering matrix
S (comb). This matrix tells us how the wave amplitudes bt
from the single-mode telescope feeds are coupled to the
wave amplitudes bia arriving at the detectors:

bia~n! 5 (
t

Sia,t
~comb!bt~n!. (46)

By combining Eqs. (44) and (46), we have

bia~n! 5 (
t

Sia,t
~comb!~n!St

~rec!~V, n! • a~V, n!. (47)

For astronomical sources, we are interested in the re-
sponse function Ra(V, n) [see Eq. (22)], which in this case
is

Ra~V, n! 5 (
i

U(
t

Sia,t
~comb!~n!St

~rec!~V, n!U2

. (48)

These response functions must obey the inequality ex-
pressed in inequality (25), with the factor of 2 removed,
since we are collecting only a single mode (single polariza-
tion). For single-mode interferometers, we would define

ra~V, n! 5
l2

AT
Ra~V, n!, (49)

and we would also omit the corresponding factor of 2 in
Eq. (36). Using Eqs. (38), (48), and (49), we can calculate
the photon-detection probability matrix pac for an inter-
ferometer. Although we have assumed identical tele-
scopes, it is straightforward to generalize our expressions
to include heterogeneous arrays.

Aperture synthesis imaging refers to the technique of
repeatedly observing a given astronomical source with
different configurations of the telescopes that form an in-
terferometer. This is a standard technique in radio as-
tronomy; interferometers are constructed with multiple
possible positions or stations for each telescope, and the
telescopes are physically moved to these different sta-
tions. In addition, aperture synthesis imaging usually
relies on the rotation of the Earth, which, in essence, ro-
tates the interferometer as a function of time with respect
to the astronomical source. The source is assumed not to
vary over the time taken to gather the aperture synthesis
observations.

It is quite straightforward to take into account multiple
telescope configurations within our formalism. The
photon-detection probability matrix pac;a depends on the
telescope configuration, which we label by the discrete in-
dex a (the different orientations produced by Earth rota-
tion may be binned). We can replace the indices a and a



224 J. Opt. Soc. Am. A/Vol. 20, No. 2 /February 2003 Jonas Zmuidzinas
with a combined index b. If there are Nconfig telescope
configurations and the interferometer has Ndetec physical
detectors, then b will take on NconfigNdetec different values,
and we can consider b to be an index for a set of virtual
detectors. This allows us to define a new photon-
detection probability matrix that describes the entire set
of aperture synthesis observations:

pbc 5 pac;awa , (50)

where the weighting factor wa is simply the fraction of
the total observing time that was spent in configuration a,

wa 5
Ta

(
a8

Ta8

, (51)

where Ta is the time spent observing in configuration a.
The properties of the photon-detection probability matrix
discussed at the end of Section 4 also hold for the case of
aperture synthesis (with Ndetec reinterpreted as the num-
ber of virtual detectors).

6. POISSON DECONVOLUTION PROBLEM
AND THE CRAMÉR–RAO BOUND
A. Introduction and Overview
We have seen that any optical instrument, including an
interferometer used for aperture synthesis imaging, may
be described by a photon-detection probability matrix P,
with elements pac . According to Eq. (40), this matrix re-
lates the mean photon counts ma registered by the detec-
tors to the source distribution lc . Some sort of inversion
procedure must be applied to obtain an estimate l̂c of the
source distribution from the observed counts Na . How
well can this deconvolution be done? What is the noise in
the deconvolved image (or spectrum)? The answer to this
question depends on

• the statistics of the photon counts,
• the deconvolution method that is used,
• the nature of the probability matrix P.

We will assume that the photon counts have indepen-
dent Poisson distributions (as we discuss below).
Clearly, we should expect in all cases that the variance of
Dl̂c 5 l̂c 2 lc obey the inequality

sc
2 5 ^~Dl̂c!

2& > lc , (52)

since the number of photons emitted from the source in
channel c has a Poisson distribution with mean lc . This
inequality will be derived, and the conditions on P that
are necessary and sufficient to achieve this limit will be
given.

A wide variety of deconvolution methods have been
proposed2; in this paper we will discuss two: a simple
linear least-squares (LS) method and the maximum-
likelihood (ML) method. In general, the ML method is
superior, but it is nonlinear and is therefore more difficult
to compute and analyze. Since the LS method is not op-
timal, its performance provides only an upper bound to
the sensitivity. However, in the important special case in
which all detectors receive the same photon flux (ma all
equal), we will see that the LS upper bound actually co-
incides with the Cramér–Rao lower bound (described be-
low), and therefore both give the actual sensitivity.

The Cramér–Rao theorem gives a rigorous lower bound
for the sensitivity that holds for any deconvolution
method. We will use this result to derive inequality (52)
and to show that the ideal sensitivity limit can be
achieved only if the instrument does not allow photons
from different spatial–spectral channels to arrive at the
same detector. In other words, an ideal instrument does
not mix up photons from different channels, and a
photon-detection event can be unambiguously assigned to
the appropriate spatial–spectral channel. Consequently,
such an instrument would achieve the lower bound on
sensitivity given by inequality (52). The definition of an
ideal instrument is given more precisely below. Unfortu-
nately, interferometers, in general, do not obey our defini-
tion and do mix up photons spatially (and spectrally) and
therefore cannot achieve the ideal sensitivity limit.

The Poisson deconvolution problem arises in many
other contexts, such as positron-emission tomography for
medical imaging37; as a result, there is extensive litera-
ture on this subject. In fact, iterative ML algorithms for
Poisson deconvolution do exist, e.g., the Richardson–Lucy
or the expectation maximization algorithm (see the re-
view by Molina et al.38 and the references therein). The
existence of ML algorithms is important, since the noise
performance of the ML method is guaranteed to asymp-
totically approach the Cramér–Rao bound in the limit of
high signal-to-noise ratio (SNR). However, in cases that
the likelihood function has multiple local maxima, the
Cramér–Rao bound often fails to give a realistic estimate
of the achievable sensitivity and does not give even a
qualitative description of how the sensitivity varies with
the SNR. This occurs because the estimation problem is
ambiguous—the various local maxima represent alter-
nate possible solutions. The Cramér–Rao bound be-
comes useful only when the SNR is large enough so that a
unique solution can be chosen among these various possi-
bilities. Examples include time delay and bearing esti-
mation problems39–41; in such cases, other techniques
such as the Ziv–Zakai bound must be used. Fortunately,
this situation does not occur for the problem we are study-
ing. We shall see that if the rank of the probability ma-
trix is equal to the number of spatial–spectral channels
@r(P) 5 Nchan#, then a finite Cramér–Rao bound exists,
the LS deconvolution also exists, and the likelihood func-
tion has a single maximum that defines the unique ML
deconvolution. Conversely, if r(P) , Nchan , a finite
Cramér–Rao bound does not exist, the LS deconvolution
may fail, and the ML method may yield a degenerate sub-
space of possible solutions instead of a single unique so-
lution.

Thus a finite Cramér–Rao bound should correspond to
the actual sensitivity of an astronomical instrument or in-
terferometer for bright objects or for long integrations;
one simply needs to ensure that the photon counts are
large, Na @ 1. The Cramér–Rao bound can therefore
provide a useful tool for quantitatively comparing the
sensitivity of various interferometer design options.
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B. Poisson Statistics
It is well established that the photon counts registered by
the detectors in an optical instrument follow statistically
independent Poisson distributions, so that the fluctua-
tions of the counts in different detectors are uncorrelated.
To be more precise, this situation holds for the case of
thermal emission (from the source, the atmosphere, the
telescope, etc.) in which the mean photon occupation
numbers of the modes incident on the detectors are low,
n ! 1. In the high occupancy limit, n @ 1, photon
bunching becomes important in that it changes the count-
ing statistics and can introduce correlations among the
detectors. We will discuss only the first case, n ! 1,
which applies to most astronomical observations at opti-
cal and infrared wavelengths.

C. Definition of an Ideal Instrument
We define an ideal instrument in terms of its probability
matrix pac , which is required to obey the condition

pac pac8 5 0 (53)

for all detectors a and for all c8 Þ c. This condition sim-
ply states that if pac Þ 0, then pac8 5 0. In words, if a
detector receives photons from the spatial–spectral chan-
nel c, it cannot receive photons from some other channel
c8. This allows us to group the detectors into disjoint
sets that may be indexed by the channel that the detec-
tors respond to. Furthermore, we require that the total
detection probability for any channel c be unity: (a pac
5 1. It is evident that such an instrument can achieve
the ideal sensitivity limit set by inequality (52); to esti-
mate the source intensity in channel c, we simply sum the
photon counts from the set of detectors responding to
channel c. By considering this set of detectors as an
equivalent single detector, one can readily see that any
ideal instrument is equivalent to an instrument that has
a probability matrix equal to the identity matrix, pac
5 dac .

The spatial and spectral resolution of an ideal instru-
ment would therefore be set by our definition of the
spatial–spectral channels c, which is, in principle, arbi-
trary. Do ideal instruments really exist, at least in prin-
ciple? Achieving the required spectral resolution without
mixing up photons spectrally is not a fundamental diffi-
culty; all one needs is a large enough grating. Achieving
the required spatial resolution without mixing up photons
spatially is a more subtle issue, since the parameters lc
refer to a fixed telescope collecting area, according to the
definition in Eqs. (36) and (39). However, we can use a
single-aperture telescope, with a diameter sufficiently
large to achieve the spatial resolution required, as long as
we reduce the transmission (i.e., use a neutral-density fil-
ter) to keep the effective collecting area (and the param-
eters lc) constant. Of course, doing so would be foolish;
this argument serves only as an existence proof.

D. Cramér–Rao Sensitivity Limit
The Cramér–Rao theorem provides a strict lower limit for
the variance of a quantity that is estimated from a set of
noisy measurements. This theorem can be applied to de-
termine the minimum noise in the determination of the
intensity in some spatial–spectral channel by use of an
instrument with a nonideal response, one whose probabil-
ity matrix differs from the identity matrix. The Hubble
Space Telescope, whose initial point-spread function suf-
fered from spherical aberration that has since been cor-
rected, provides a particularly well-known example of the
substantial sensitivity degradation that occurs as a result
of a nonideal response, which cannot be undone by image
restoration techniques such as the maximum-entropy
algorithm.42 In fact, the Cramér–Rao limit was applied
to exactly this situation by Jakobsen et al.43 The
Cramér–Rao theorem has also been used to evaluate
similar information loss effects in other imaging prob-
lems, for instance, gamma-ray imaging in nuclear
medicine.44

We start by quickly reviewing the Cramér–Rao
theorem.45–47 Let us consider an experiment that deliv-
ers a set of measurements, denoted by the vector x, but
that has scatter that is due to measurement noise. The
measurement process can be described by a probability
distribution f(xuu) to obtain a result x. Here the vector u
represents the unknown parameters or quantities that
the experiment is sensitive to, such as the source inten-
sity distribution in our case. The usual goal is to deter-
mine one or more of these parameters from the measured
data, say, u i . To do this, we must construct some estima-
tor û i(x) that uses the measured data vector x to estimate
u i . For simplicity, we assume that this estimator is un-
biased; the results could be generalized to include bias.
First, we define the matrix

Mij~u! 5 K ] ln f

]u i

] ln f

]u j
L

5 E dxf~xuu!
] ln f~xuu!

]u i

] ln f~xuu!

]u j
. (54)

This is known as the Fisher information matrix and is
symmetric and nonnegative definite. In fact, it is posi-
tive definite, unless there is some linear combination of
parameters u i that the function f(xuu) is completely inde-
pendent of, in which case we should reparameterize to
eliminate that linear combination. Thus we assume M
has an inverse, M21, which is also positive definite. For
a detailed analysis of the case in which the Fisher infor-
mation matrix is singular, we refer the reader to a recent
paper by Stoica and Marzetta.48

The Cramér–Rao theorem states that C > M21, where
C is the covariance matrix of the estimators, Cij 5 ^( û i

2 u i)( û j 2 u j)&, and the matrix inequality is understood
to mean that C 2 M21 is nonnegative definite. In par-
ticular, the diagonal elements give

s i
2 5 ^~ û i 2 u i!

2& > ~M21!ii . (55)

A weaker limit can also be given:

s i
2 > ~M21!ii > ~Mii!

21. (56)

The second (weaker) limit can be obtained by considering
the case in which all other parameters are known except
for u i .
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We now apply this to the photon-detection problem.
The detector counts have independent Poisson distribu-
tions:

f~Nul! 5 )
a

ma
Na

Na!
exp~2ma!, (57)

so

] ln f

]lc
5 (

a
S 2pac 1

Na pac

ma
D , (58)

Mcc8~l! 5 K ] ln f

]lc

] ln f

]lc8
L 5 (

a

pac pac8

ma

5 (
a

pac pac8

(
c9

pac9lc9

, (59)

by virtue of ^Na Na8& 5 mama8 1 madaa8 . The Cramér–
Rao sensitivity limit for channel c is

sc
2 > ~M21!cc . (60)

Equation (59) and inequality (60) are key results, since
they give us a quantitative way to set lower limits to the
sensitivity of optical instruments. Alternatively, for
some purposes we may wish to use the weaker bound,
sc

2 > (Mcc)
21, which is the result quoted by Jakobsen

et al.43:

sc
2 > F(

a

pac
2

(
c8

pac8lc8
G 21

. (61)

It is easy to verify that either form gives sc
2 5 lc in the

case of an ideal instrument, for which pac 5 dac . How-
ever, we note that although the Cramér–Rao bound given
by inequality (60) is asymptotically achievable by the ML
method, this is not true, in general, for the weaker bound.

These sensitivity limits depend on the values of lc , i.e.,
the structure of the source. For the case of a point
source located in channel c, inequality (61) gives sc

2

5 lc ((a pac)
21 > lc ; the equality holds if all the pho-

tons are detected. The sensitivity limit given by the
stronger Cramér–Rao bound [inequality (60)] is typically
only somewhat worse than this. The reason that the
point-source sensitivity does not vary much with the in-
strument response is that we are simply summing all the
photons counted by all the detectors; it does not matter
much how the photons are distributed among the detec-
tors. Thus calculations that only compare the sensitivi-
ties of interferometers to point sources do not tell the
whole story.

It is illuminating to write Eq. (59) with matrix nota-
tion:

M 5 PTG21P, (62)

where G 5 diag (m1 , m2 ,...) is a diagonal matrix. From
this expression, it is evident that the Fisher information
matrix will be singular if the probability matrix P does
not have full rank @r(P) , Nchan#.
It may appear that Eq. (62) presents a mathematical
difficulty for the case of an ideal instrument observing a
point source, for which ma 5 0 for the off-source channels.
A similar situation may also occur for nonideal instru-
ments. However, one can imagine adding a low-level
background to the point source, so that now ma 5 e for
the off-source channels. The Fisher information matrix
M is now well defined and can be inverted to obtain the
Cramér–Rao bound. Finally, the limit e → 0 can be
taken.

E. Sensitivity Bound and Ideal Instruments
We now prove the sensitivity bound given in inequality
(52) and show that only ideal instruments can actually
achieve this limit. For some channel c, the weaker bound
states that

1

sc
2 < Mcc 5 (

aPDc

pac
2

ma

, (63)

where Dc 5 $au pac Þ 0%. Now

ma 5 (
c8

pac8lc8 > paclc > 0, (64)

since all the terms in the sum are nonnegative. Thus

1

sc
2 < (

aPDc

pac
2

paclc
5 (

aPDc

pac

lc
<

1

lc
, (65)

since (a pac < 1. This proves inequality (52). The con-
ditions necessary to actually achieve this limit are evi-
dent from the derivation: ma 5 paclc and (a pac 5 1.
Since the source distribution lc is, in general, arbitrary,
the first condition can be met only if pac8 5 0 for all c8
Þ c. Thus the instrument must be an ideal instrument.
We have therefore shown that only ideal instruments can
(and do) achieve the sensitivity bound given by inequality
(52).

F. Maximum-Likelihood Deconvolution
Deconvolution that uses the ML method is desirable,
since the performance of the ML method is guaranteed to
asymptotically approach the Cramér–Rao bound in the
high SNR limit. Apart from a constant, the logarithm of
the likelihood function for some estimate m̂ of the mean
count rate is [see Eq. (57)]:

ln f 5 (
a

~Na ln m̂a 2 m̂a!. (66)

The goal of the ML method is to find a source distribution
l̂ that maximizes this function, where m̂ 5 Pl̂. In gen-
eral, we would seek the solution by setting the gradient to
zero, ] ln f/]l̂c 5 0. However, the case in which Na 5 0
for one or more detectors must be treated with care. The
difficulty may be illustrated by first considering ln f to be
a function of m̂ directly. The maximum of this function is
unique and occurs at m̂a 5 Na , and, in fact, ] ln f/]m̂a

5 21 for the detectors that have Na 5 0. The problem
is that the maximum occurs at the boundary of the physi-
cally acceptable region m̂a > 0. We can remedy this
problem by making all detector counts nonzero, replacing
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Na 5 0 with Na 5 e, where e ! 1. We then proceed to
find the ML solution using calculus; at the end, we take
the limit e → 0.

We therefore assume that Na . 0 for all detectors.
The local maxima of the likelihood function must then
obey [see Eq. (58)]

] ln f

]l̂c

5 (
a

pacS 21 1
Na

m̂a
D 5 0 (67)

or, in matrix notation, PTv 5 0, where the components of
the vector v are va 5 21 1 Na /m̂a . Thus v must be in
the null space of PT, which is the annihilator of the range
of P. If there are Ndetec detectors and P has rank r(P), v
is constrained to lie in a subspace of dimension Ndetec
2 r(P). In addition, m̂ must lie in the range of P, as
m̂ 5 Pl̂, which gives r(P) additional constraints. Over-
all, we would get Ndetec constraint equations for v, which
could be solved to yield the local maxima of the likelihood
function. However, since some of the constraints apply
linearly to v and others apply linearly to m̂, the combined
set of equations are, in fact, nonlinear. As mentioned
earlier, iterative algorithms for finding the solution(s) do
exist.

We now demonstrate that, in general, there is only a
single local maximum of the likelihood function. Sup-
pose instead that there were two distinct local maxima,
corresponding to two different source distributions l̂ (a)

and l̂ (b). We can write m̂ (a) 5 Pl̂ (a) and m̂ (b) 5 Pl̂ (b)

and introduce the vectors v (a) and v (b), defined by their
components

va
~a ! 5 21 1

Na

m̂a
~a !

, (68)

and similarly for va
(b) . Since these correspond to local

maxima, we know that we must have PTv (a) 5 PTv (b)

5 0, which tells us that both v (a) and v (b) must lie in the
annihilator of the range of P. Since m̂ (a) and m̂ (b) lie in
the range of P, v (a) and v (b) must each be orthogonal to
both m̂ (a) and m̂ (b):

(
a

m̂a
~a !va

~a ! 5 (
a

m̂a
~b !va

~b ! 5 0, (69)

(
a

m̂a
~a !va

~b ! 5 (
a

m̂a
~b !va

~a ! 5 0. (70)

These conditions tell us that

(
a

m̂a
~a ! 5 (

a
m̂a

~b ! 5 (
a

Na (71)

and also that

(
a

NaF m̂a
~a !

m̂a
~b !

2 1G 5 (
a

NaF m̂a
~b !

m̂a
~a !

2 1G 5 0. (72)

Define xa 5 m̂a
(a)/m̂a

(b) > 0. Adding the equations above
yields

(
a

Nag~xa! 5 0, (73)
where g(x) 5 x 2 2 1 1/x. Now, the function g(x) has a
single minimum in the domain x > 0, located at x 5 1,
and g(1) 5 0. Since Na . 0 and g(x) > 0, we must ac-
tually have g(xa) 5 0 and so all xa 5 1, and therefore
m̂a

(a) 5 m̂a
(b) . Thus Pl̂ (a) 5 Pl̂ (b). If P has full rank

@r(P) 5 Nchan#, we can conclude that l̂ (a) 5 l̂ (b), and so,
in fact, there is only a single local maximum, and the ML
deconvolution is unique. If P does not have full rank, the
solution is ambiguous, and l̂ (a) 5 l̂ (b) 1 l, where l can be
any vector in the null space of P. As discussed above, the
Fisher information matrix will be singular in this situa-
tion, so the calculation of the Cramér–Rao bound will fail.
Also, LS deconvolution will fail, since PTP will not have
an inverse (see below).

G. Least-Squares Deconvolution
To obtain a simpler (but suboptimal) linear method, we
could attempt to set v 5 0, which would give

m̂a 5 (
c

pacl̂c 5 Na . (74)

Since, in general, Ndetec . r, this system of linear equa-
tions overconstrains l̂ but may be solved in a LS sense.
Another way of explaining this is that the vector m̂ must
lie in the range of P, but, in general, the vector N does not.
The LS algorithm is obtained by first projecting N into the
range of P and then solving the resulting linear system
for l̂:

l̂~LS! 5 ~PTP !21PTN. (75)

In general, PTP is symmetric and nonnegative definite.
In fact, it is positive definite and has an inverse if and
only if P has full rank @r(P) 5 Nchan#. Thus the exis-
tence of a finite Cramér–Rao bound guarantees both that
the LS deconvolution exists and that the likelihood func-
tion has a single maximum.

Because the LS deconvolution is linear, it is straightfor-
ward to calculate its bias and its noise performance. In
fact, the LS method is unbiased, since

^l̂~LS!& 5 ~PTP !21PTm 5 ~PTP !21PTPl 5 l. (76)

The covariance matrix of the LS deconvolution is given by

C ~LS! 5 ^Dl̂LS~Dl̂LS!T& 5 ~PTP !21PTGP~PTP !21,
(77)

where G 5 diag(m1 , m2 ,...), as defined earlier. Since the
LS method is not optimal, in general, this covariance ma-
trix can be used to establish an upper bound to the sensi-
tivity, to complement the Cramér–Rao lower bound.

In the case that ma 5 m are all equal, G 5 mI, we see
that the covariance matrix simplifies to

C ~LS! 5 m~PTP !21. (78)

Meanwhile, the Fisher information matrix [Eq. (62)] for
this case is M 5 m21PTP, so, in fact, the performance of
LS deconvolution achieves the Cramér–Rao bound. This
is admittedly a special case. However, it may often occur
in practice, at least approximately, e.g., for a uniform
source or when the photon counts are dominated by the
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contribution of a uniform background such as thermal
emission from the atmosphere or the telescopes.

Another interesting special case occurs when the prob-
ability matrix P is square and has full rank, r(P)
5 Nchan . Under these conditions, P can be inverted, and
one can show that the LS and ML estimators are, in fact,
the same:

l̂~LS! 5 l̂~ML! 5 P21N. (79)

Also, both estimators achieve the Cramér–Rao bound.

H. Interferometry, Aperture Synthesis, and the
Cramér–Rao Bound
Astronomical aperture synthesis observations often do
not obtain enough information to uniquely determine the
source intensity distribution (map) at the desired resolu-
tion. In other words, the condition r(P) , Nchan applies,
and so a finite Cramér–Rao bound does not exist. In
such cases, a linear or nonlinear regularization method
(such as the maximum-entropy method) may be applied
to select a single representative map that has certain de-
sirable characteristics (e.g., smoothness, positivity) out of
the infinite set of maps that are consistent with the mea-
sured data.

What good is the Cramér–Rao bound in such cases?
All the regularization techniques have the general feature
of varying the effective local spatial (or spectral) resolu-
tion, depending on the interferometer response and the
SNR. One might therefore redefine the spatial–spectral
channels a posteriori, reducing Nchan by degrading the
resolution in the appropriate portions of the map, so as to
achieve the condition r(P) 5 Nchan required for the calcu-
lation of the Cramér–Rao bound. Alternatively, a singu-
lar value decomposition of the probability matrix could be
used to determine which components of the source distri-
bution can be recovered from the data.48

However, the utility of the Cramér–Rao bound tran-
scends its application to any one particular set of aperture
synthesis observations. The real power of the Cramér–
Rao bound is that it provides a rigorous way to compare
the sensitivity of different interferometer designs and
observing strategies. An a priori choice of the spatial–
spectral channels sets the problem: What area must be
mapped and at what resolution? This choice is ulti-
mately dictated by the science we wish to do. Once the
channels are defined, we can calculate the Cramér–Rao
bound for any interferometer design, assuming some set
of telescope configurations. If the bound does not exist,
the set of configurations must be expanded or the inter-
ferometer design must be modified and the calculation re-
peated. The optimization of the observing strategy for a
particular interferometer design amounts to determining
the set of configurations, and their time allocations, that
gives the best Cramér–Rao bound.

7. APPLICATION TO ONE-DIMENSIONAL
ARRAYS
A. Introduction
In Section 6 we have seen that the only way to achieve the
best possible sensitivity for a measurement of the spectral
and spatial intensity distribution of a source is to build an
instrument that separates the photons into separate
spectral–spatial channels prior to detection. Unfortu-
nately, interferometers with separated telescopes gener-
ally cannot achieve this goal, since the instantaneous (not
synthesized) angular response function will not be highly
localized, as is the case for a single-aperture telescope,
but will instead have multiple sidelobes or fringes. In
the case of a two-element interferometer, this response
function is just the single-telescope pattern, modulated by
the interference fringes that correspond to the baseline
between the two telescopes. Thus, although these
fringes can provide much higher angular resolution than
the individual telescopes, the spatial information pro-
vided by each detected photon is less than would have
been obtained with a more localized response function.

It is important to determine quantitatively the magni-
tude of this effect, to be able to compare various options in
the design of an interferometer, such as the number of
telescopes, their configurations, and the method of beam
combining. This comparison can be done with the
Cramér–Rao lower bound. In this section we present the
results of a numerical calculation of the Cramér–Rao sen-
sitivity limits for a one-dimensional aperture synthesis
array. A homogeneous one-dimensional array provides a
nice case study because the parameter space is limited
and the computations are fast, and yet the principal im-
plications of the Cramér–Rao bound can be readily dem-
onstrated. In addition, we calculate an upper bound to
the sensitivity derived from the LS method. A compari-
son of these two bounds demonstrates that, in fact, the
Cramér–Rao approach is highly useful for this problem.

B. Interferometer Response
The interferometer consists of T identical equally-spaced
telescopes spread along the x axis, each with length L1 ,
and the overall collecting length is LT 5 TL1 . We
choose uniform illumination, so that the single-element
amplitude pattern has the form

S ~rec!~u! 5 S L1

l
D 1/2

sincS pL1

l
u D . (80)

Here u is the angle from zenith, and we have assumed
that L1 @ l, which allows a small-angle approximation to
be made. The full width at half-power of this single-
element pattern is 0.886l/L1 . For our comparison, we
use L1 5 1000l, although the normalized sensitivities
do not depend on the telescope size. For telescope t lo-
cated at position xt with respect to the origin,

St
~rec!~u! 5 expS i

2pxt

l
u DS ~rec!~u!. (81)

The response of the interferometer for a given choice of
beam combination is still given by Eq. (48) (note that the
modal sum over i can be omitted, since we assume single-
mode detectors); however, the proper normalization for
the detection probability function is

ra~u, n! 5
l

LT
Ra~u, n!. (82)

For the numerical examples, we assume a single narrow
frequency channel and discretize the spatial variable u
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into Nchan uniform pixels, labeled by the index c
5 1 ,..., Nchan , extending across the field of view of a
single telescope, 20.75l/L1 < u < 0.75l/L1 . The
photon-detection probability matrix pac , defined by Eq.
(38), is calculated with a one-dimensional analog of Eq.
(32).

C. Pairwise Combination
We compare two types of beam combination. The first
case is the usual pairwise combination, in which we focus
on measuring the fringe visibilities and fringe phases that
can be obtained from the T(T 2 1)/2 telescope baseline
pairs. To do this, the light from each telescope must first
be split into T 2 1 beams. We assume that the fringe
measurement is done using four detectors per baseline, as
shown in Fig. 1. The scattering matrix of the beam com-
biner produces the following four linear combinations:

b1~t, t8! 5
1

2AT 2 1
~bt 1 bt8!,

b2~t, t8! 5
1

2AT 2 1
~bt 2 bt8!,

b3~t, t8! 5
1

2AT 2 1
~bt 1 ibt8!,

b4~t, t8! 5
1

2AT 2 1
~ibt 1 bt8!.

Here bt and bt8 represent the single-mode wave ampli-
tudes corresponding to the light collected by telescopes t
and t8, and the four amplitudes bk(t, t8) (here k
5 1,..., 4) represent the four combinations of light from
the two telescopes that are being detected to produce the
corresponding photon counts Nk(t, t8). To avoid repeat-
ing telescope pairs, we require T > t . t8 > 1. The total
number of detectors in this scheme is 2T(T 2 1). The
detector index a 5 1,..., 2T(T 2 1) uniquely specifies a
baseline pair (t, t8) as well as one of the four beam-
combiner outputs k; we can set a(t, t8, k) 5 @4(T 2 1)
2 2t8)](t8 2 1) 1 4(t 2 2) 1 k. For example, Eq. (48)
reads

Ra~V, n! 5
1

4~T 2 1 !
uSt

~rec!~u! 1 iSt8
~rec!

~u!u2 (83)

Fig. 1. Schematic diagram of the pairwise beam combination
scheme for a single baseline between telescopes t and t8. The
inputs t and t8 on the left represent the single-mode beams from
the two telescopes, after division T 2 1 ways. The four outputs
on the right are sent to photon-counting detectors.
for the case that a 5 a(t, t8, k 5 3).
It is straightforward to verify that the first two beam

combinations produce symmetric angular response func-
tions, whereas the latter two produce antisymmetric re-
sponse functions (apart from a constant offset term).
Thus both types of beam combination are needed to
uniquely determine the image of a source. The latter two
beam combinations are readily produced with a 50%
beam splitter; at microwave frequencies, the equivalent
device is known as a 90° 3-dB hybrid. The first two com-
binations can be obtained by use of the optical equivalent
of a microwave 180° 3-dB hybrid; such devices are cur-
rently being investigated for nulling interferometry.49,50

All four combinations can be gotten simultaneously by
use of a two-way power splitter (or a 50% beam splitter),
as shown in Fig. 1. It is straightforward to verify that for
this beam combination scheme all the power (photons)
collected by the telescopes is absorbed by the detectors.
Equivalently, the scattering matrix of the beam combiner
is unitary and only couples input ports to output ports.

D. Butler Combination
As shown in Fig. 2, the second type of beam combination
method we investigate is the standard Butler matrix
beam-forming network,51 which is used with microwave
phased-array antennas to produce a set of localized
beams, each pointing in a different direction. This ap-
proach is analogous to the image-plane beam recombina-
tion used in Fizeau interferometry. Although similar
free-space optical techniques could be used for microwave
beam forming, Butler beam formers use guided-wave
components (coaxial or waveguide) and are therefore
much smaller physically.

The key idea behind the Butler matrix is to produce a
linear-stepped phase gradient across the antenna or tele-
scope array in order to steer the beam of the array.
Mathematically, the T outputs ba , which are sent to the
photon-counting detectors, are given in terms of the T
single-mode inputs bt from the telescopes by

ba 5
1

AT
(
t51

T

bt expS i
2pat

T D , (84)

which, in essence, is just a discrete Fourier transform.
The Butler matrix is actually a hardware implementation
of this concept that is analogous to the fast-Fourier-
transform algorithm. Power conservation, or unitarity of
the beam-combiner scattering matrix, follows from Parse-
val’s theorem. The typical angular response functions for
pairwise and Butler combining are compared in Fig. 3.

Fig. 2. Schematic diagram of the Butler matrix all-on-one beam
combination scheme. The inputs on the left represent the
single-mode beams from all T telescopes; each of the T outputs on
the right, which are sent to photon-counting detectors, contain
some contribution from all T telescope inputs.
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E. Numerical Calculations
We consider array configurations of three, six, and ten
uniformly spaced telescopes, as shown in Table 1. Since
the maximum baseline of all the array configurations
shown in Table 1 is Bmax 5 45L1 and the maximum base-
line controls the spatial resolution, we use Nchan 5 41
spatial pixels in the calculations.

As shown in Table 1, the calculation also includes Nspac
different telescope spacings, ranging from close-packed to
dilute arrays. The source is observed repeatedly with
different telescope spacings; this is an example of aper-
ture synthesis in one dimension. For example, we as-
sume that the three-telescope array observes the source
in a total of Nspac 5 44 different configurations. The first
configuration corresponds to a close-packed array, in
which the telescope spacing is S 5 L1 . The various con-
figurations are obtained by incrementing the telescope
spacing S by DS; thus the second configuration has S
5 1.5L, the third has S 5 2.0L1 , and so on. The most
dilute configuration has S 5 22.5L1 . The corresponding
positions of the three telescopes are x1 5 2S, x2 5 0, and
x3 5 S.

To account for these various configurations, we imagine
that there are actually Nspac Ndetec different virtual detec-
tors, now indexed by b, where Ndetec is the physical num-
ber of detectors (labeled by a) in any one configuration.
Note that we must have Nchan , Nspac Ndetec ; otherwise,

Fig. 3. Comparison of the angular response functions for pair-
wise and Butler beam combining. Top, typical response corre-
sponding to two telescopes in a pair-combined array; the separa-
tion between the telescopes is 27L1 for this example. Bottom,
typical response of a Butler-combined array; in this case, there
are 10 uniformly spaced telescopes, with a distance 3L1 between
telescopes, so that the array size is 27L1 .

Table 1. Array Configurationsa

Tb Nspac
c Smin

d Smax
d DSd Bmax

e

3 44 1.0 22.5 0.5 45.0
6 17 1.0 9.0 0.5 45.0

10 9 1.0 5.0 0.5 45.0

a All dimensions are scaled to the telescope size L1 .
b The number of telescopes.
c The number of element spacings.
d Minimum, maximum, and step size for the element spacings.
e The maximum baseline.
the probability matrix P cannot have full rank, and the
Fisher information matrix [Eq. (59)] will be singular. As
described in the discussion of aperture synthesis at the
end of Section 5, the detection probabilities for any one
configuration are reduced by the factor (Nspac )21. We
are splitting up the total observing time into Nspac differ-
ent sessions of equal duration, one per configuration; the
total probability over the course of the entire integration
for a photon to be detected by the array in some particular
configuration is (Nspac )21. As a check, we verified that
in all cases the total combined probability for detecting
photons from the central spatial pixels c in any of the vir-
tual detectors b was near unity: (b51

(Nspac Ndetec)pbc ' 1.
We also consider two types of source: uniform sources

and point sources. For uniform sources, we set lc 5 1
for all Nchan spatial pixels; for point sources, we set lc
5 1 only for the central pixel and set all others to zero.

F. Results
Figure 4 shows the results for a uniform source with But-
ler beam combination. The vertical axis is the normal-
ized Cramér–Rao sensitivity bound, calculated with in
equality (60). This sensitivity would be unity for an ideal
instrument, that is, a single telescope with an aperture
large enough to resolve the spatial pixels but with the
same total effective collecting area as the interferometer
(i.e., with a neutral-density filter or attenuator to reduce
the total number of detected photons to match the inter-
ferometer). A sensitivity above unity implies that the
use of an interferometer incurs a penalty owing to its in-
ability to fully determine from which spatial pixel each
detected photon came. As Fig. 4 shows, adding more
telescopes improves the sensitivity; the reason for this is
that the quality of the instantaneous beam pattern im-
proves. For this particular example, the sensitivity pen-

Fig. 4. Variation of the normalized sensitivity with telescope
array size for the case of Butler beam combination. The source
is assumed to have a uniform spatial distribution. The horizon-
tal axis gives the spatial position u in units of l/L1 ; note that
the full width at half-power of the single-element pattern is
0.886l/L1 . The vertical axis gives the Cramér–Rao normalized
sensitivity bound (see text for details). For Butler beam combi-
nation, increasing the array size improves the normalized sensi-
tivity. The dotted curve shows that the sensitivity degradation
toward the edges of the field of view scales as the reciprocal of the
single-element beam pattern. The upper sensitivity limit calcu-
lated with the LS deconvolution method is indistinguishable
from Cramér–Rao bound; thus this plot gives the actual achiev-
able sensitivity.
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alty for the Butler-combined interferometer is a factor of
;3 for a ten-telescope array. The variation of the sensi-
tivity across the field of view is seen to scale with the in-
verse of the single-element power pattern, as shown by
the dotted curve in Fig. 4. The reason for this is that the
Cramér–Rao sensitivity bound includes the effects of
noise cross talk between the spatial pixels that arise from
the nonideal interferometer beam patterns. For this ex-
ample, the upper limit to sensitivity derived from the LS
deconvolution method [by use of Eq. (77)] coincides with
the lower limit set by the Cramér–Rao bound; thus either
gives the true sensitivity.

Figure 5 shows the comparable uniform-source results
with pairwise beam combination. In this case, the nor-
malized sensitivity (which takes out the effect of the total
collecting area) shows no improvement as the array size is
increased. This is because the quality of the instanta-
neous beam patterns remains unchanged: The beam
patterns are always those of two-element interferometers.
Again, the sensitivity scales inversely with the single-
element pattern; however, the sensitivity penalty relative
to an ideal instrument is now a factor of ;10. Again, the
LS and Cramér–Rao bounds coincide, so either yields the
true sensitivity. The comparison between the Butler-
combined and the pairwise-combined ten-element arrays
for uniform sources is shown more directly in Fig. 6; the

Fig. 5. Similar to Fig. 4 but calculated for pairwise beam com-
bination. Normalized sensitivity is essentially independent of
array size. Again, the upper limit from the LS method is calcu-
lated to be the same as the Cramér–Rao lower bound.

Fig. 6. Comparison of normalized sensitivities for Butler versus
pairwise beam combining for a ten-element array when uniform
sources are observed; the sensitivity advantage for Butler com-
bining is more than a factor of 3.
Butler-combined array enjoys a sensitivity advantage in
excess of a factor of 3 for this example.

A similar comparison for the case of point sources is
shown in Figs. 7–9. There now is a difference between
the LS upper bound and the Cramér–Rao lower bound for
the case of Butler combining (Fig. 7) but not for pairwise
combining (Fig. 8). However, we see that the LS upper
bound still allows us to demonstrate the superiority of ar-
rays with larger numbers of elements and of Butler com-
bining over pairwise combining.

The normalized Cramér–Rao sensitivities for the point
source itself are quite comparable in all cases, which we
expect, because we can, in essence, sum all the photons
detected to estimate the brightness of the source. How-
ever, the sensitivity for the off-source pixels tells a much
different story. Here Butler combination enjoys a large
sensitivity advantage, approximately an order of magni-
tude for the ten-element array. Note that for the Butler-
combined arrays, the sensitivity of the off-source pixels is
actually substantially better than for the on-source pixels.
This is highly desirable: It gives the array more sensi-
tivity to see faint sources in the presence of a brighter

Fig. 7. Similar to Fig. 4 but calculated for a point source in the
center of the field instead of for a uniform source. Note that al-
though the normalized sensitivity to the point source is nearly
constant, the sensitivity for off-source pixels improves substan-
tially with array size. The upper limit from the LS method is
somewhat worse than the Cramér–Rao lower bound and is
shown as the upper solid curve for the ten-element array. This
curve lies near the Cramér–Rao lower bound for the six-element
array and below the bound for the three-element array.

Fig. 8. Similar to Fig. 7 but with pairwise beam combination as-
sumed; there is no sensitivity improvement with array size.
The sensitivity of the LS method is indistinguishable from the
Cramér–Rao bound, so the plot gives the actual sensitivity.
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nearby object. An ideal instrument, such as a large
single-aperture telescope, would, in fact, have sc 5 0 for
the off-source pixels, since the detectors corresponding to
these pixels do not receive any photons. (Of course, this
is not entirely true for real telescope systems owing to
scattered light.)

8. CONCLUDING REMARKS
In this paper we have made the case that the instanta-
neous angular response functions of an interferometer
govern its sensitivity: Interferometers with more com-
pact and localized response functions are more sensitive.
The physical reason for this is simple and clear: Such in-
terferometers obtain more spatial information per photon
detected. We have demonstrated this effect by numeri-
cally calculating the Cramér–Rao sensitivity limits for
the simple case of homogeneous, equally spaced, one-
dimensional aperture synthesis arrays that use either
Butler or pairwise beam combining. These calculations
show that Butler beam combining, which is analogous to
the image-plane combination used in Fizeau interferom-
etry, is substantially more sensitive, which we expect,
since the response functions are more compact. In addi-
tion, our example shows that when telescopes are added
to the array the sensitivity of a Butler-combined interfer-
ometer improves much more rapidly than that of the total
collecting area. However, it is important to remember
that the imperfect beam patterns of sparse-aperture in-
terferometers extract a sensitivity penalty as compared
with filled-aperture telescopes, even after accounting for
the differences in collecting areas.

The Cramér–Rao bound appears to be a very interest-
ing and useful tool for the study and optimization of in-
terferometer designs. The approach presented in this
paper can readily be applied to two-dimensional arrays
that are of any configuration and that use any type of
beam combination method. Our approach, which is
based on scattering matrices, is especially well suited to
describe beam combination by use of guided-wave (inte-

Fig. 9. Comparison of normalized point-source sensitivities for
Butler combination and pairwise combination for a ten-element
array. Although the sensitivities to the point source itself are
comparable, Butler combination is an order of magnitude more
sensitive for off-source pixels. The upper solid curve gives the
LS upper sensitivity limit for the Butler-combined array, and it
lies well below the Cramér–Rao lower bound for the pairwise-
combined array.
grated) optics. Although we have discussed only homo-
geneous arrays, in which all telescopes are identical, the
formalism can readily be adapted to handle heteroge-
neous arrays. The Cramér–Rao sensitivity bounds were
obtained for very idealized circumstances, in which we
have included only the counting statistics of the photons
arriving from the source. However, it is again not diffi-
cult to extend our results to include effects such as back-
ground noise, which is due to thermal emission from the
telescope or atmosphere and from detector dark current
or read noise or both. Although these effects are impor-
tant in real applications and should be included in more
realistic calculations, we have ignored them to limit the
parameter space and to focus on the fundamental issues
involved. In closing, we encourage other researchers
who are involved in interferometer design to investigate
the applicability of the Cramér–Rao approach for deter-
mining the sensitivity trade-offs for real arrays and for a
range of astrophysical problems. As an example, it
would be interesting to study the exoplanet detection
problem, under realistic constraints such as a fixed total
collecting area.
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